顾及对象特征的地面式光伏电站提取及减碳效益评估
于方圆(2000— ),女,河南周口人,硕士生,主要从事GIS空间分析、DEM数字地形分析。E-mail: 13523138305@163.com |
收稿日期: 2022-09-10
修回日期: 2022-11-04
网络出版日期: 2023-04-19
基金资助
国家自然科学基金项目(42271421)
国家自然科学基金重点项目(41930102)
Ground Photovoltaic Power Station Extraction Considering Object Characteristics and Carbon Reduction Benefit Evaluation
Received date: 2022-09-10
Revised date: 2022-11-04
Online published: 2023-04-19
Supported by
General Program of National Natural Science Foundation of China(42271421)
Key Program of National Natural Science Foundation of China(41930102)
准确、高效地获取地面光伏电站的空间部署现状,科学估算光伏电站发电效益及其碳减排成效,对未来光伏电站建设的合理布局与光伏资源的有效利用具有重要意义。本文以我国西部新疆维吾尔自治区、青海省和西藏自治区作为研究区: ① 使用以ResNet50作为骨干网络的ResNet50-UNet网络分割模型自动提取地面光伏电站,在深度学习广泛应用于遥感语义分割/地表覆盖分类的背景下,本文未局限于单一地对网络模型的不断改进上,而同时考虑了如何充分发挥输入样本的自身优势,研究中基于Sentinel-2A遥感影像挖掘光伏电站纹理特征,强调地物固有特征在智能化深度学习中的应用价值,模型提取精度得到显著提升;② 针对提取结果边界精度较差的问题,提出结合ArcGIS和eCognition多尺度分割优化处理光伏电站提取结果的技术路线,高保真还原地面光伏电站真实形态。经后处理优化,提取结果的Kappa系数达93.71%,mIoU值达94.05%;③ 碳减排效益评估时,准确估算光伏电站发电量是进行该工作的重要前提,本文基于光伏电站提取结果,从内部结构复杂的光伏用地中准确提取发电量估算公式中的重要参数之一——光伏方阵面积,实现了大区域范围下光伏电站发电量的有效估算,进一步探究光伏能源与传统化石能源之间的碳源效应,助力我国双碳目标的早日实现。
于方圆 , 曹家玮 , 李发源 , 李思进 . 顾及对象特征的地面式光伏电站提取及减碳效益评估[J]. 地球信息科学学报, 2023 , 25(3) : 529 -545 . DOI: 10.12082/dqxxkx.2023.220680
As a clean energy technology, photovoltaic power generation has developed rapidly in the past decades. Efficiently obtaining the spatial distribution of photovoltaic power stations is important for the future construction of photovoltaic plants. This study took Xinjiang, Qinghai and Tibet in western China as research areas. Firstly, to evaluate the application value of object characteristics in deep learning, the texture structures of photovoltaic power stations were mined based on Sentinel-2A imagery. Then we employed a ResNet50-UNet segmentation model based on the ResNet50 backbone network to automatically detect photovoltaic power stations. Secondly, based on ArcGIS and eCognition Multi-scale software, we post processed the extraction results to remove empty spots and optimize boundaries, and precisely restored the real shape of ground photovoltaic power stations. Results show that the photovoltaic power station extraction method obtains high verification accuracy, the Kappa and mIoU was 93.71%, and 94.05%, respectively. Lastly, this paper analyzed the spatial deployment status of photovoltaic power stations in Xinjiang, Qinghai and Tibet, and discussed the carbon source effects between solar energy and traditional fossil energy. Accurate estimation of photovoltaic power generation is a significant precondition for next carbon reduction benefit evaluation. From the photovoltaic power stations with complex internal structures, this paper extracted the photovoltaic square arrays, one of the important parameters in the estimation formula of power generation. The average annual power generation of existing photovoltaic power stations in Xinjiang, Qinghai and Tibet was about (335.13~442.26) billion kW·h, equivalent to burning (411.87~543.54) million tons of coal. From the perspective of carbon emissions, the carbon reduction benefit is about (2499.40~3298.38) million tons. Thus, photovoltaic power stations play an important role in achieving carbon peak and neutrality goals.
表1 深度学习二分类混淆矩阵Tab. 1 Confusion Matrix for Deep Learning Binary classification |
真实情况 | 预测情况 | |
---|---|---|
正样本 | 负样本 | |
正样本 | TP | FN |
负样本 | FP | TN |
注:TP:True Positive,地面上为正样本,预测同为正样本;FP:False Positive,地面上为正样本,预测为负样本;FN和TN同理。 |
表2 模型精度验证评价指标Tab. 2 Accuracy verification and evaluation index |
指标 | 公式 | 公式编号 | 备注 |
---|---|---|---|
Kappa系数 | (1) | 假设每一类的真实样本个数分别为a1, a2,..., ac;而预测出来的每一类样本个数分别为b1, b2,..., bc,总样本个数为n,则有:Pe = a1 × b1 + a2 × b2 +... + ac × bc / (n×n);P0是每一类正确分类的样本数量之和除以总样本数,也就是总体分类精度。 | |
平均交并比mIoU | (2) | IoU在语义分割任务中用来表示目标区域和预测区域之间的重合度。mIoU定义为平均交并比,即在每个类别上计算交并比IoU值 | |
(3) | |||
召回率Recall | (4) | TP为随机选择子样区中识别的光伏电站数量;FN为随机选择子样区中未识别出的光伏电站数量 |
表3 主流太阳能电板类型Tab. 3 Common types of solar panels |
标称功率/W | 尺寸/mm | 重量/kg | 硅片数量/pcs | 光伏板面积/m2 | 转换效率K1/% | |
---|---|---|---|---|---|---|
多晶硅 | 255~280 | 1650×992×40 | 18.5 | 6×10 | 1.634 | 15.27~17.11 |
305~330 | 1650×992×40 | 22.5 | 6×12 | 1.940 | 15.72~17.01 | |
单晶硅 | 265~290 | 1956×992×40 | 18.5 | 6×10 | 1.634 | 16.19~17.72 |
320~345 | 1956×992×40 | 22.5 | 6×12 | 1.940 | 16.49~17.78 |
表4 提取结果精度评价Tab. 4 Precision evaluation of the extraction results (%) |
测试集 | 评价指标 | 模型初步提取结果 | “多尺度分割”后提取结果 | 召回率Recall人工检验 | |
---|---|---|---|---|---|
未加入“纹理特征” | 加入“纹理特征” | ||||
新疆 | Kappa | 83.47 | 90.92 | 95.66 | 89.54 |
mIoU | 84.91 | 91.37 | 95.76 | ||
青海 | Kappa | 90.17 | 92.77 | 95.12 | 95.38 |
mIoU | 91.45 | 93.09 | 95.26 | ||
西藏 | Kappa | 40.12 | 87.56 | 90.35 | 89.09 |
mIoU | 61.43 | 88.84 | 91.13 |
表5 研究区光伏电站年均发电量Tab. 5 Average annual power generation from PV plants in the study area (亿kW·h) |
新疆维吾尔自治区 | 青海省 | 西藏自治区 | ||||||
---|---|---|---|---|---|---|---|---|
年发电量Min | 年发电量Max | 年发电量Min | 年发电量Max | 年发电量Min | 年发电量Max | |||
1 | 144.04 | 190.08 | 201.91 | 266.44 | 18.19 | 24.01 | ||
2 | 143.03 | 188.75 | 200.49 | 264.58 | 18.07 | 23.84 | ||
3 | 142.03 | 187.43 | 199.09 | 262.72 | 17.94 | 23.67 | ||
4 | 141.04 | 186.11 | 197.70 | 260.88 | 17.81 | 23.51 | ||
5 | 140.05 | 184.81 | 196.31 | 259.06 | 17.69 | 23.34 | ||
6 | 139.07 | 183.52 | 194.94 | 257.24 | 17.57 | 23.18 | ||
7 | 138.09 | 182.23 | 193.57 | 255.44 | 17.44 | 23.02 | ||
8 | 137.13 | 180.96 | 192.22 | 253.66 | 17.32 | 22.86 | ||
9 | 136.17 | 179.69 | 190.87 | 251.88 | 17.20 | 22.70 | ||
10 | 135.21 | 178.43 | 189.54 | 250.12 | 17.08 | 22.54 | ||
11 | 134.27 | 177.18 | 188.21 | 248.37 | 16.96 | 22.38 | ||
12 | 133.33 | 175.94 | 186.89 | 246.63 | 16.84 | 22.22 | ||
13 | 132.40 | 174.71 | 185.58 | 244.90 | 16.72 | 22.07 | ||
14 | 131.47 | 173.49 | 184.29 | 243.19 | 16.61 | 21.91 | ||
15 | 130.55 | 172.27 | 183.00 | 241.48 | 16.49 | 21.76 | ||
16 | 129.63 | 171.07 | 181.71 | 239.79 | 16.37 | 21.61 | ||
17 | 128.73 | 169.87 | 180.44 | 238.12 | 16.26 | 21.46 | ||
18 | 127.83 | 168.68 | 179.18 | 236.45 | 16.15 | 21.31 | ||
19 | 126.93 | 167.50 | 177.92 | 234.79 | 16.03 | 21.16 | ||
20 | 126.04 | 166.33 | 176.68 | 233.15 | 15.92 | 21.01 | ||
21 | 125.16 | 165.16 | 175.44 | 231.52 | 15.81 | 20.86 | ||
22 | 124.28 | 164.01 | 174.21 | 229.90 | 15.70 | 20.72 | ||
23 | 123.41 | 162.86 | 173.00 | 228.29 | 15.59 | 20.57 | ||
24 | 122.55 | 161.72 | 171.78 | 226.69 | 15.48 | 20.43 | ||
25 | 121.69 | 160.59 | 170.58 | 225.10 | 15.37 | 20.28 | ||
年平均发电量 | 132.57 | 174.94 | 185.82 | 245.22 | 16.74 | 22.10 |
注:年发电量Min表示在组件转化效率=15.27%,系统综合效率=75%下的发电量估算值;年发电量Max表示在组件转化效率=17.78%,系统综合效率=85%下的发电量估算值;首年衰减率为2.5%,次年衰减率为0.7%;第一列1,2,3,……,25中1代表全部光伏电站在其各自建成后第一年的发电情况总体统计,最后一行代表全部光伏电站在其各自生命周期内多年平均下的发电情况总体统计。 |
[1] |
潘竟虎, 张永年. 中国能源碳足迹时空格局演化及脱钩效应[J]. 地理学报, 2021, 76(1):206-222.
[
|
[2] |
谢聪, 王强. 中国新能源产业技术创新能力时空格局演变及影响因素分析[J]. 地理研究, 2022, 41(1):130-148.
[
|
[3] |
邓祥征, 丹利, 叶谦, 等. 碳排放和减碳的社会经济代价研究进展与方法探究[J]. 地球信息科学学报, 2018, 20(4):405-413.
[
|
[4] |
朱志辉. 我国太阳能分布的非线性回归模式[J]. 地理研究, 1984,(3):76-83.
[
|
[5] |
阿依加马力·艾尼, 塔伊尔江·巴合依. 新疆地区光伏产业的发展现状与前景分析[J]. 太阳能, 2021(8):19-25.
[Development status and prospect analysis of pv industry in Xinjiang region[J]. Solar Energy, 2021(8):19-25.] DOI:10.19911/j.1003-0417.tyn20200612.01
|
[6] |
|
[7] |
|
[8] |
张乾, 辛晓洲, 张海龙, 等. 基于遥感数据和多因子评价的中国地区建设光伏电站的适宜性分析[J]. 地球信息科学学报, 2018, 20(1):119-127.
[
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
宋业冲, 李英成, 耿中元, 等. 深度学习方法在光伏用地遥感检测中的应用[J]. 测绘科学, 2020, 45(11):84-92.
[
|
[20] |
吴永静, 吴锦超, 林超, 等. 基于深度学习的高分辨率遥感影像光伏用地提取[J]. 测绘通报, 2021(5):96-101.
[
|
[21] |
秦志远, 朱峻泷, 张琛, 等. 基于ResNet34-UNet的静脉超声图像分割方法研究[J]. 临床超声医学杂志, 2022, 24(1):74-78.
[
|
[22] |
|
[23] |
|
[24] |
王斌, 陈占龙, 吴亮, 等. 兼顾连通性的U-Net网络高分辨率遥感影像道路提取[J]. 遥感学报, 2020, 24(12):1488-1499.
[
|
[25] |
|
[26] |
|
[27] |
|
[28] |
楚博策, 高峰, 帅通, 等. 基于特征图集合的遥感影像深度学习地物分类研究[J]. 无线电工程, 2022, 52(4):630-637.
[
|
[29] |
|
[30] |
|
[31] |
|
[32] |
刘佳, 何清, 刘蕊, 等. 新疆太阳辐射特征及其太阳能资源状况[J]. 干旱气象, 2008, 26(4):61-66.
[
|
[33] |
|
[34] |
|
[35] |
熊礼阳, 汤国安, 杨昕, 等. 面向地貌学本源的数字地形分析研究进展与展望[J]. 地理学报, 2021, 76(3):595-611.
[
|
[36] |
杨昕, 汤国安, 刘学军, 等. 数字地形分析的理论、方法与应用[J]. 地理学报, 2009, 64(9):1058-1070.
[
|
[37] |
苍学智, 汤国安, 仲腾, 等. 山顶点类型及其形态特征数字表达[J]. 南京师大学报(自然科学版), 2010, 33(1):136-140.
[
|
[38] |
|
[39] |
|
[40] |
章海灿, 杨松, 罗易, 等. 光伏电站发电量计算方法研究[J]. 太阳能, 2016(8):42-45.
[
|
[41] |
中华人民共和国工业和信息化部. 光伏制造行业规范条件[S]. 2018.
[Ministry of Industry and Information Technology of the People's Republic of China. Specifications for photovoltaic manufacturing industry[S]. 2018.]
|
[42] |
中华人民共和国自然资源部. 光伏发电站工程项目用地控制标准[S]. 2016.
[Ministry of natural resources of the people's Republic of China. Land control standards for photovoltaic power station engineering projects[S]. 2016.]
|
[43] |
韩梦瑶, 熊焦, 刘卫东. 中国光伏发电的时空分布、竞争格局及减排效益[J]. 自然资源学报, 2022, 37(5):1338-1351.
[
|
[44] |
全国能源基础与管理标准化技术委员会. 综合能耗计算通则[S]. 2020.
[National Energy Foundation and Management Standardization Technical Committee. General rules for calculation of comprehensive energy consumption[S]. 2020.]
|
/
〈 |
|
〉 |