顾及道路权重的图卷积犯罪时空预测模型
贺日兴(1972—),男,江西安福人,博士,教授,博导,主要从事犯罪地理和警用地理信息技术等研究。E-mail: herixing@cnu.edu.cn |
收稿日期: 2023-05-31
修回日期: 2023-08-02
网络出版日期: 2023-09-22
基金资助
国家重点研发计划项目(2022YFB3903602)
公安部科技强警基础工作专项(2021JC35)
国家自然科学基金青年项目(42001159)
国家自然科学基金项目(41971367)
A Graph Convolution-based Spatio-temporal Crime Prediction Model Considering Road Weights
Received date: 2023-05-31
Revised date: 2023-08-02
Online published: 2023-09-22
Supported by
National Key Research and Development Program(2022YFB3903602)
Special Projects of Ministry of Public Security in Strengthening Basic Police Work(2021JC35)
Youth Fund of the National Natural Science Foundation of China(42001159)
National Natural Science Foundation of China(41971367)
传统的犯罪地理和犯罪时空预测方法主要是以警务辖区或格网为基本单元,分析结果不利于指导精细化的巡防警力规划部署。基于深度学习的图神经网络方法可以自然地与微观尺度下的路网拓扑结构相结合,实现道路尺度下的精细犯罪预测,但现有方法鲜有考虑道路权重对预测结果的影响。本文通过引入道路通达度和距离衰减因子,构建了一种顾及道路权重的图卷积犯罪时空预测模型(Road Weighted Spatio-Temporal Graph Convolutional Network,RW-STGCN),并利用芝加哥2016—2017年街面盗窃犯罪数据对模型进行评估。结果表明: ① 与未考虑道路权重的时空图卷积模型相比,RW-STGCN模型命中率在不同的路网覆盖比例下(1%、5%、10%、20%)的提升均在6.5%以上,且随着覆盖比例的下降,模型命中率的提升更为显著,最大提升超过了50%; ② 模型消融性实验表明,同时考虑2种道路权重的模型比仅考虑距离衰减权重或道路通达度权重单个因子的模型预测性能提升更为明显,命中率最大提升了12.9%。本研究构建的RW-STGCN模型有助于街面类犯罪预测,可为警务部门基于路网进行科学巡逻防控规划与警力部署提供辅助决策支持,此外还可用于以道路作为分析单元的城市计算问题研究。
贺日兴 , 唐宗棣 , 姜超 , 林艳 , 陆宇梅 , 李欣然 , 龙伟 , 邓悦 . 顾及道路权重的图卷积犯罪时空预测模型[J]. 地球信息科学学报, 2023 , 25(10) : 1986 -1999 . DOI: 10.12082/dqxxkx.2023.230299
Spatiotemporal crime prediction often employs quantitative techniques such as Geographic Information Systems (GIS), geo-statistics, and big data analysis to predict the time and risk area (or location) of crime events that are more likely to occur in the future. In the era of big data, how to dynamically optimize the deployment of limited police forces and successfully improve the effectiveness of crime prevention based on data-driven crime predictions is a research focus in the field of global predictive policing. It is also a main practical direction for law enforcement agencies worldwide to implement modern proactive policing models. Traditional crime geography and spatiotemporal crime prediction methods mainly use police precincts or grids as the basic spatial analysis unit, and the analysis results are not conducive to guiding refined patrol force planning and deployment. The graph neural network based on deep learning can be combined with the topological structure of the road network at the micro scale, enabling precise crime prediction at the street scale. However, existing approaches rarely consider the impact of road weights in model prediction. In this paper, a Road Weighted Spatiotemporal Graph Convolutional Network (RW-STGCN) is constructed for street crime prediction by introducing road network accessibility and distance attenuation factors, and the model is evaluated using street theft crime data of Chicago. The results show that: (1) Compared to the spatiotemporal graph convolutional networks without considering road weights, the hit rate of the RW-STGCN increases by more than 6.5% across various road network coverage ratios (1%, 5%, 10%, and 20%), and the increase becomes more significant as the coverage ratio decreases, with a maximum increase exceeding 50%. This indicates the effectiveness and superiority of the RW-STGCN for smaller units; (2) Model ablation experiments show that the hit rate of the RW-STGCN considering road weights increases by 13.5% compared to the model result without considering road weights, and the model considering both road weights has a more significant improvement in prediction performance than the model considering only a single factor of distance attenuation weight or road network access weight, with a maximum increase of 12.9% in hit rate. This suggests that deep learning methods combined with geographic features can effectively improve the accuracy of crime prediction. The RW-STGCN is helpful for street crime prediction and can provide auxiliary decision support for law enforcement agencies to conduct scientific patrol planning and police force deployment based on road networks. In addition, it is also useful for the study of road-related urban computing problems.
表1 不同权重的模型变体Tab. 1 Model variants with different weights |
模型变体 | 道路距离权重 | 道路通达度权重 |
---|---|---|
RW-STGCN-T | × | × |
RW-STGCN-S1 | √ | × |
RW-STGCN-S2 | × | √ |
RW-STGCN-SS | √ | √ |
[1] |
王发曾. 我国城市犯罪空间防控研究二十年[J]. 人文地理, 2010, 25(4):25-30.
[
|
[2] |
贺日兴, 陆宇梅, 姜超, 等. 近10年来犯罪时空预测国内外研究与实践进展[J]. 地球信息科学学报, 2023, 25(4):866-882.
[
|
[3] |
|
[4] |
|
[5] |
|
[6] |
贺日兴. 警用地理信息系统——理论、技术与应用[M]. 北京: 中国人民公安大学出版社, 2022:240-248.
[
|
[7] |
|
[8] |
|
[9] |
李卫红, 闻磊, 陈业滨. 改进的GA-BP神经网络模型在财产犯罪预测中的应用[J]. 武汉大学学报·信息科学版, 2017, 42(8):1110-1116,1171.
[
|
[10] |
柳林, 刘文娟, 廖薇薇, 等. 基于随机森林和时空核密度方法的不同周期犯罪热点预测对比[J]. 地理科学进展, 2018, 37(6):761-771.
[
|
[11] |
|
[12] |
|
[13] |
刘大千. 长春市犯罪空间分析及规划管理防控[D]. 长春: 东北师范大学, 2012.
[
|
[14] |
|
[15] |
陈鹏, 林平, 孙菲菲, 等. 风险地形建模在犯罪风险评估中的应用[J]. 测绘与空间地理信息, 2017, 40(12):4-9.
[
|
[16] |
徐冲, 柳林, 周素红. 基于临近相似性考虑的犯罪热点密度图预测准确性比较——以DP半岛街头抢劫犯罪为例[J]. 地理科学, 2016, 36(1):55-62.
[
|
[17] |
毛媛媛, 戴慎志. 犯罪空间分布与环境特征——以上海市为例[J]. 城市规划学刊, 2006(3):85-93.
[
|
[18] |
宋广文, 黎晓彐, 肖露子, 等. 交互作用视角下人口流动性与住房类型对城市入室盗窃空间格局的影响[J]. 地理研究, 2022, 41(11):2897-2911.
[
|
[19] |
张延吉, 林钦熙, 朱春武, 等. 可渗透性环境对盗窃犯罪分布的影响及社会解组的调节作用——兼论街道眼理论与防卫空间理论的适用性[J]. 地理科学进展, 2022, 41(6):1041-1052.
[
|
[20] |
柳林, 杜方叶, 肖露子, 等. 不同类型道路密度对公共空间盗窃犯罪率的影响——基于ZG市的实证研究[J]. 人文地理, 2017, 32(6):32-38, 46.
[
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
肖露子, 柳林, 宋广文, 等. 基于理性选择理论的社区环境对入室盗窃的影响研究[J]. 地理研究, 2017, 36(12):2479-2491.
[
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
谢超. 基于网络分析的地下通道对街区步行可达性影响研究——以广州天河新城为例[C].成都://面向高质量发展的空间治理——2021中国城市规划年会论文集(05城市规划新技术应用), 2021:444-453.
[
|
[41] |
陈方, 张澄洋, 丁思远. 生活街区轨道站步行易达性测度研究——以深圳和香港为例[J]. 南方建筑, 2021(4):31-38.
[
|
[42] |
张春霞, 周素红, 柳林, 等. 建成环境对星级酒店内被盗的影响——以ZG市中心城区为例[J]. 地理科学进展, 2020, 39(5):829-840.
[
|
[43] |
何健, 黄启乐, 汪振东. 广州市城市道路网密度提升路径探索[J]. 交通与运输, 2019, 35(4):35-38.
[
|
[44] |
居少捷, 孙琳珊. 基于空间句法的轨交站点人流空间分布研究——以南京新街口为例[J]. 城市建筑, 2023, 20(6):87-89,93.
[
|
[45] |
姜昀呈, 孙立坚, 王涛涛, 等. 兰州市中心城区犯罪分布与城市环境的关系[J]. 测绘科学, 2021, 46(5):167-174.
[
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
/
〈 | 〉 |