船舶轨迹提取模型构建与交通流分析
闫兆进(1991— ),男,山东济宁人,博士,讲师,主要从事地理大数据挖掘研究。E-mail: yanzhaojin@cumt.edu.cn |
收稿日期: 2023-02-11
修回日期: 2023-08-22
网络出版日期: 2023-11-02
基金资助
国家自然科学基金项目(42201451)
中国博士后科学基金项目(2022M723379)
江苏省双创博士项目(JSSCBS20221523)
江苏省煤基温室气体减排与资源化利用重点实验室开放基金(2022KF05)
中央高校基本业务费项目(2022QN1058)
Ship Route Extraction Methods and Traffic Flow Analysis
Received date: 2023-02-11
Revised date: 2023-08-22
Online published: 2023-11-02
Supported by
National Natural Science Foundation of China(42201451)
China Postdoctoral Science Foundation(2022M723379)
Jiangsu Province Double Innovation Doctoral Program(JSSCBS20221523)
Open Research Fund of Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization(2022KF05)
Fundamental Research Funds for the Central Universities(2022QN1058)
船舶航线提取与交通流分析是航线设计、海事管理、贸易分析等研究的基础。面向海量船舶轨迹,现有船舶航线提取方法在大范围海域的适应性、方法复杂性以及与真实船舶交通航线的符合性方面还存在不足。本研究以海量船舶自动识别系统(Automatic Identification System, AIS)数据为研究对象,提出一种船舶轨迹提取模型构建与交通流分析方法。首先,将船舶航行轨迹抽象为船舶停留特征点(停留点)与移动特征点(航路点)的组合,其中停留点为船舶在港口处停留轨迹段的特征点,航路点为船舶移动轨迹段中航行速度或航行角度发生明显变化的特征点,构建“出发港(停留)→移动(航路)→目的地港(停留)”船舶航行轨迹抽象模型,实现船舶航行轨迹划分;然后,以船舶航行轨迹抽象模型为基础,基于图论理论进一步聚类海量船舶航行轨迹的停留点和航路点,提取表征船舶航线的航线点(停留航线点和航路航线点);最后,建立航线点连接矩阵,以船舶交通图的形式实现船舶航线提取,为船舶航线提取、交通流分析等提供新方法。以南海丝路海域为研究区,利用2017年全年的历史AIS数据,分析研究区内典型商船(集装箱船、散货船、油轮)的交通流特征和船舶航线。结果表明,提取航线与船舶交通高密度区域高度吻合,能够反映南海丝路区域真实的船舶交通航线。进一步与现有航线数据比较可知,本文提取航线的细节更加丰富,结构更加完整。与现有船舶航线提取方法相比,本文方法具有两方面的优势。① 本文方法提取的船舶航线具有更大的丰富度。本文方法不仅提取出船舶航线,还识别船舶航行过程中的特征点,即船舶停留特征点和航路特征点,这对于航线设计和航行安全无疑是重要的知识支撑; ② 本文方法提取的航线更易于分析海运交通网络。由于本文方法提取的航线是点对点的形式,且每条航线都是从港口出发,易于构建海运交通网络,可以实现潜在的运输网络分析。本研究可为船舶航线规划、交通流分析、航行安全等提供决策支持。
闫兆进 , 杨慧 , 慈慧 , 王冉 . 船舶轨迹提取模型构建与交通流分析[J]. 地球信息科学学报, 2023 , 25(11) : 2134 -2149 . DOI: 10.12082/dqxxkx.2023.230059
Extraction of ship routes and analysis of traffic flow are the basis of route design, maritime management, and trade analysis. Based on the massive ship trajectory data, existing ship route extraction methods still have limitations in terms of adaptability to large sea areas, model complexity, and consistency with real maritime traffic routes. In this study, we propose a ship trajectory extraction model and traffic flow analysis based on massive ship Automatic Identification System (AIS) data. Firstly, the ship's navigation trajectory is abstracted as the combination of a ship's stay points (stop points) and movement points (waypoints). Stop points represent the characteristic of a ship's stop trajectory at the port, and the waypoint represents the ship's moving trajectory characteristic, e.g., the sailing speed or sailing angle changes significantly. The navigation trajectory abstraction model denoted as "departure port (stop point)→movement (waypoint)→destination port (stop point)" of a ship is constructed, enabling the division of ship navigation trajectory. Secondly, based on the abstract model of ship navigation trajectory, further clustering of stop points and waypoints of the massive ship navigation trajectory based on graph theory is implemented to extract route points (stop points and waypoints) of ships. Finally, a route point connection matrix is established to realize ship route extraction in the form of ship traffic map, which provides a new method for ship route extraction and traffic flow analysis. Taking the Silk Road area in the South China Sea as the study area, the historical AIS data for the entire year of 2017 are used to analyze the traffic flow characteristics and ship routes of typical merchant ships (i.e., container ships, bulk carriers, and oil tankers). The results show that the extracted ship routes are highly consistent with the maritime traffic in high-density areas and can reflect the real maritime traffic routes. Compared with the existing shipping route data, the details of extracted routes are enriched, and the structure is more comprehensive. In addition, compared with the existing shipping route extraction methods, the proposed method has two following advantages. First, the shipping routes extracted by the proposed method have greater richness. The proposed method not only extracts the shipping routes but also identifies the characteristic points during ship navigation, i.e., the stopping points and the waypoints of the ship route, which provides important knowledge support for route design and navigation safety. Second, the extracted routes can be easily applied to analyze the maritime traffic network. Since the extracted routes are in the form of point-to-point starting from the port, it is easy to construct a maritime traffic network, allowing for potential transportation network analysis. This study contributes decision-making support for ship route planning, traffic flow analysis, navigation safety, etc.
[1] |
梅强, 吴琳, 彭澎, 等. 南海区域商船典型空间分布及贸易流向研究[J]. 地球信息科学学报, 2018, 20(5):632-639.
|
[2] |
|
[3] |
闫兆进, 杨慧. 基于多源数据和船舶停留轨迹语义建模的港口目标识别[J]. 地球信息科学学报, 2022, 24(9):1662-1675.
|
[4] |
|
[5] |
王加胜, 刘永学, 杨昆, 等. 基于空间聚类分析的南海主要航线提取方法[J]. 交通运输工程学报, 2016, 16(6):91-98.
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
陈金海, 陆锋, 彭国均, 等. 船舶轨迹数据的Geodatabase管理方法[J]. 地球信息科学学报, 2012, 14(6):728-735.
|
[11] |
|
[12] |
|
[13] |
|
[14] |
柳林, 陈德宝, 徐冲, 等. 入室盗窃临近重复案件与孤立案件分布的影响因素对比研究[J]. 地理科学, 2021, 41(9):1625-1633.
|
[15] |
张远强, 史国友, 李松. 基于在线有向无环图的船舶轨迹压缩算法[J]. 交通运输工程学报, 2020, 20(4):227-236.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
万刚, 曹雪峰. 地理空间信息网格的历史演变与思考[J]. 测绘学报, 2016, 45(S1):15-22.
|
[21] |
|
[22] |
吴迪, 王诺, 于安琪, 等. “丝路”海运网络的脆弱性及风险控制研究[J]. 地理学报, 2018, 73(6):1133-1148.
|
[23] |
王成, 王茂军, 王艺. 中国嵌入“21世纪海上丝绸之路”航运网络的关键节点识别[J]. 地理科学进展, 2018, 37(11):1485-1498.
|
[24] |
刘卫东. “一带一路”战略的科学内涵与科学问题[J]. 地理科学进展, 2015, 34(5):538-544.
|
[25] |
CIA, Map of the world oceans[OL], January 2015. < https://legacy.lib.utexas.edu/maps/world_maps/world_oceans_2015.pdf>(accessed March 2018).2015.
|
[26] |
|
/
〈 | 〉 |