基于旅伴效应的游客就餐行为分析
牟乃夏(1973— ),男,山东平度人,教授,博导,主要从事时空大数据挖掘研究。E-mail: mounaixia@163.com |
Copy editor: 蒋树芳 黄光玉
收稿日期: 2023-02-03
修回日期: 2023-05-02
网络出版日期: 2024-03-27
基金资助
国家自然科学基金项目(42171460)
Understanding the Dining Behavior of Foodie Tourists under the Influence of Travel Partner Effects
Received date: 2023-02-03
Revised date: 2023-05-02
Online published: 2024-03-27
Supported by
National Natural Science Foundation of China(42171460)
美食已成为游客旅途中乐意分享的热点话题,进一步揭示了游客的旅游行为特征,分析不同旅伴角色下游客就餐行为的差异能更好地理解旅游中的旅伴效应。本文以2012—2020年重庆市美食游记为研究数据,采用社会网络分析等方法研究不同旅伴游客的就餐行为差异,研究表明:① 游客就餐网络(食物网络和餐厅网络)结构受旅伴影响显著。旅伴的加入有效提升了食物网络节点联系的紧密程度,并扩展了餐厅网络节点关联的空间范围;② 旅伴角色影响游客在旅程中对特色食物类型的选择。其中,无旅伴的游客(独自一人)在体验特色食物类型时呈现“被动保守型”、旅伴角色为三五好友的游客呈现“遍历型”,而其他旅伴角色的游客呈现“随意/兴趣型”;③ 独自旅行游客和旅伴角色为闺蜜、家庭、情侣以及三五好友游客的就餐行为差异反映了旅伴和社会关系的交叉影响,是美食旅游动机下个体和群体面向多因素综合作用的就餐决策结果。本文从食物类型和餐厅2个视角揭示了不同旅伴角色下的游客就餐行为特征,为深度刻画人群移动行为机理和社会因素影响下的人群活动时空动态提供了科学指导。
牟乃夏 , 卞书娣 , 王艳慈 , 张灵先 , 郑允豪 , Teemu Makkonen , 杨腾飞 . 基于旅伴效应的游客就餐行为分析[J]. 地球信息科学学报, 2024 , 26(2) : 408 -423 . DOI: 10.12082/dqxxkx.2024.230042
Food attracts a large number of foodie tourists to travel together. Although previous research has discussed food tourism mainly from the point of view of customer satisfaction, there is still an evident gap in our knowledge about the travel behavior of foodie tourists and the influences of their travel partners on travel patterns. This paper uses travel diary data from Qunar.com and takes foodie tourists in Chongqing, China as an example to analyze the influence of travel partner types on tourists' "dining trajectories". In this paper, we proposed a research framework for the dining behavior characteristics of foodie tourists from the perspective of travel partners based on travel diaries. As restaurants have the characteristics of various categories and dense distribution, the characteristics of tourists' dining behavior were explored from two aspects: food types and spatial distribution of restaurants. Firstly, the foodie tourists' dining behavior network (the flow network between food types and the flow network between restaurants) was constructed. Secondly, the social network analysis of food network was carried out, and the changes of community relationship between food types were explored by community detection and the results of food network structure index analysis. Then the social network analysis of the restaurant network was carried out, and foodie tourists' dining behavior characteristics were explored by structural indicators of the restaurant network. The results show that: (1) The food network characteristics of tourists with different travel partner roles differed significantly. The nodes of food network of solo tourist (no travel partners) were not connected closely, while the food network of other travel partner role showed obvious small-world characteristics; (2) The role of travel partners influenced tourists' choice of specialty food types. In particular, solo tourists showed a "passive and conservative" type of dining, tourists with three or five friends showed a "try all the specialties" type of dining, and tourists with other travel partner roles showed a "casual/interesting" dinning behavior; (3) The characteristics of restaurant network of tourists with different travel partner roles differed significantly. The restaurant network of travel partners as a couple showed obvious small-world characteristics, while the nodes of restaurant network of other travel partner roles were not connected closely. The results provide basis for destination marketing organizations to formulate marketing material and dining route recommendations for foodie tourists. In the future, it is necessary to understand the impact of interpersonal relationships on human mobility and develop spatiotemporal analysis theory and models for dealing with mobile location big data.
Key words: food tourism; travel diary; travel partner role; social network; dining behavior; food type; restaurant; Chongqing
表1 网络游记数据示例Tab. 1 Example records of online travel diaries |
用户ID | 游记ID | 出行时间 | 旅伴角色 | 途中餐厅POI序列 |
---|---|---|---|---|
186091972@qunar | 5530681 | 2014-10-01 | 家庭 | 6070128;9195332;6852971;8016406… |
160294179@qunar | 7438399 | 2018-10-01 | 情侣 | 33236336;17975509;23480649;27582399… |
171774996@qunar | 7443083 | 2018-11-12 | 三五好友 | 3396427;6603853;3392592;6874328 |
238865295@qunar | 6817707 | 2017-04-29 | 独自一人 | 14476019;11686767;16271967;13944207… |
162778022@qunar | 7627441 | 2020-10-04 | 闺蜜 | 16993010;6834944;11686506;14527923 |
图2 重庆市网络游记涉及的餐厅分布Fig. 2 The location of Chongqing and the restaurants included in the data |
表2 不同旅伴角色游客食物类型流动网络结构指标Tab. 2 The network structure indicators for the food types sampled by foodie tourists travelling with different travel partner types |
旅伴角色 | 节点数/个 | 平均度 | 平均加权度 | 平均聚类系数 |
---|---|---|---|---|
独自一人 | 28 | 3.286 | 5.536 | 0.548 |
闺蜜 | 21 | 3.000 | 5.619 | 0.659 |
家庭 | 20 | 3.000 | 5.500 | 0.703 |
情侣 | 25 | 6.160 | 6.360 | 0.647 |
三五好友 | 28 | 3.571 | 7.857 | 0.599 |
表3 不同旅伴角色餐厅网络结构指标Tab. 3 The network structure indicators for restaurants visited by foodie tourists travelling with different travel partner types |
网络名称 | 节点数/个 | 平均度 | 平均加权度 | 平均聚类系数 | 平均路径长度 |
---|---|---|---|---|---|
独自一人 | 119 | 1.227 | 1.303 | 0.023 | 4.968 |
三五好友 | 170 | 1.259 | 1.294 | 0.049 | 5.829 |
家庭 | 94 | 1.117 | 1.170 | 0.019 | 4.996 |
闺蜜 | 96 | 1.198 | 1.229 | 0.026 | 5.653 |
情侣 | 115 | 1.304 | 1.383 | 0.059 | 4.987 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
梁嘉祺, 姜珊, 陶犁. 基于网络游记语义分析和GIS可视化的游客时空行为与情绪关系实证研究——以北京市为例[J]. 人文地理, 2020, 35(2):152-160.
[
|
[24] |
李渊, 郭晶, 陈一平. 基于多源数据的旅游者视觉行为模式与感知评估方法[J]. 地球信息科学学报, 2022, 24(10):2004-2020.
[
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
程雪兰, 方叶林, 苏雪晴, 等. 中国东部沿海5大城市群旅游流网络结构空间分布特征研究[J]. 地理科学进展, 2021, 40(6):948-957.
[
|
[32] |
|
[33] |
朱冬芳, 虞虎, 刘青青, 等. 入藏旅游流网络结构特征与组织模式——基于团队游和自助游视角的比较分析[J]. 地理科学进展, 2021, 40(5):812-824.
[
|
[34] |
周李, 吴殿廷, 虞虎, 等. 基于网络游记的城市旅游流网络结构演化研究——以北京市为例[J]. 地理科学, 2020, 40(2):298-307.
[
|
[35] |
朱腾腾, 谢礼珊, 吴一景. 多方价值共创:旅游虚拟社区结伴同游意愿的形成[J]. 旅游学刊, 2021, 36(12):99-113.
[
|
[36] |
|
[37] |
黄潇婷, 刘春. 旅游同伴角色对旅游者行为的制约影响——以香港海洋公园为例[J]. 人文地理, 2016, 31(2):128-135.
[
|
[38] |
龙潜颖, 徐彤. 旅游同伴对个体旅游体验影响机制研究[J]. 旅游科学, 2022, 36(5):38-58.
[
|
[39] |
范梦余, 陈怡宁, 张辉. 湖南旅游客源市场结构与目的地形象感知——基于地理标记照片的实证分析[J]. 经济地理, 2021, 41(12):223-232.
[
|
[40] |
|
[41] |
陈晔, 张辉, 董蒙露. 同行者关乎己?游客间互动对主观幸福感的影响[J]. 旅游学刊, 2017, 32(8):14-24.
[
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
苗学玲, 保继刚. “众乐乐”:旅游虚拟社区“结伴旅行”之质性研究[J]. 旅游学刊, 2007, 22(8):48-54.
[
|
[47] |
|
[48] |
白凯, 符国群. 家庭旅游决策研究的中国化理论视角与分析思路[J]. 旅游学刊, 2011, 26(12):49-56.
[
|
[49] |
白凯, 张娇, 璩亚杰. 双元孝道对家庭旅游决策行为的影响研究[J]. 旅游科学, 2018, 32(1):62-73.
[
|
[50] |
|
/
〈 |
|
〉 |