基于轨迹数据的遵义市红色旅游者时空行为模式研究
刘 俊(1979— ),男,四川乐山人,博士,教授,主要研究方向为旅游大数据、可持续旅游。E-mail: liujun_igsnrr@126.com |
Copy editor: 蒋树芳 黄光玉
收稿日期: 2022-09-17
修回日期: 2023-10-07
网络出版日期: 2024-03-27
基金资助
四川大学研究基金项目(SKSYL2022-04)
四川大学区域历史与边疆学学科群项目
四川省教学改革项目(JG2021-391)
四川大学教学改革项目(SCU8115)
Spatial-temporal Behavior Pattern of Red Tourists in Zunyi City Based on Trajectory Data
Received date: 2022-09-17
Revised date: 2023-10-07
Online published: 2024-03-27
Supported by
Research Fund of Sichuan University.(SKSYL2022-04)
Regional History and Frontier Studies of Sichuan University
Teaching Reform Project of Sichuan Province.(JG2021-391)
Teaching Reform Project of Sichuan University(SCU8115)
通过轨迹大数据的挖掘,揭示旅游者时空行为模式是旅游地理学的重要研究内容。本文引入时间、空间和方向相似度对基于密度的聚类算法(Density-Based Spatial Clustering of Applications with Noise, DBSCAN)进行了改进,选择典型的红色旅游目的地遵义市为案例,对2010—2019年的红色旅游者轨迹进行分析。研究发现:① 所构建的研究框架和方法能够有效提取轨迹大数据中隐含的旅游者的时空行为模式;② 遵义市红色旅游以半日游为主,夏季是红色旅游旺季;③ 红色旅游有 6类模式,分别为“红色+购物娱乐”、“红色+历史文化”、“红色+登山旅游”、“红色+生态休闲”、“红色+古镇旅游”、“红色+乡村旅游”,主要分布于遵义市的西北部、东南部和西南部,模式长度12.03~18.42 km,模式持续时长0.65~13.60 h;④ 所有模式中共提取出24条旅游线路,包括全红色旅游线路(58.33%)和混合线路(41.67%),平均长度为17.69 km,平均时长2.36 h;⑤ 遵义会议旧址作为核心吸引物,支撑了38.46%的线路的形成;⑥ 蓉遵高速、兰海高速、杭瑞高速和遵义绕城高速是红色旅游模式形成中最重要的交通依托。本文提出的方法可用于其他区域旅游行为模式和线路挖掘研究,研究结果可为遵义市红色旅游空间格局优化和线路规划提供依据。
刘俊 , 陈佳淇 , 冯冰 , 王胜宏 . 基于轨迹数据的遵义市红色旅游者时空行为模式研究[J]. 地球信息科学学报, 2024 , 26(2) : 424 -439 . DOI: 10.12082/dqxxkx.2024.220699
Revealing the spatial-temporal behavior patterns of tourists is an important research focus in tourism geography. Trajectory big data mining provides a new way for better understanding tourists' spatial-temporal behavior. However, current research on the spatial-temporal behavior patterns of tourists is mainly based on the analytical framework of individual behavior in time geography, which makes it difficult to extract behavior patterns when dealing with large samples of trajectory data at larger scales. GPS records the user's location information periodically, capturing attributes such as time, space, speed, and direction, with a strong continuity, and travelers can record their own itinerary at any time with their cell phones and upload it to outdoor tourism websites. These processes not only effectively enhances the accuracy of the data but also offers unique advantages in researching travelers' behavior patterns. In this paper, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is improved by incorporating temporal, spatial, and directional similarity information, and a typical red tourist destination is selected as the study case using GPS trajectories from 2010 to 2019. The results show that: (1) The research framework and methods constructed in this study are novel, and they effectively extract and reveal the spatial-temporal behavior pattern of tourists in Zunyi City; (2) Red tourism in Zunyi City mainly consists of half-day tours, and summer is the peak season for red tourism; (3) There are six types of red tourism behavior, namely "red + shopping and entertainment", "red + historical culture", "red + mountaineering tourism", "red + ecological leisure", "red + ancient town tourism", and "red + rural tourism", mainly distributed in the northwest, southeast, and southwest of Zunyi City, with a travel length ranging from 12.03~18.42 km and a travel duration ranging from 0.65~13.60 h; (4) A total of 24 tourist routes are extracted from all patterns, including all-red tourist routes (58.33%) and mixed routes (41.67%), with an average length of 17.69 km and an average duration of 2.36 h. Especially, the former Zunyi Conference site is the most popular tourist destination, accounting for 38.46%; (5) The red tourist routes in Zunyi City primarily rely on the Rongzun Expressway, Lanhai Expressway, Hangrui Expressway, and Zunyi Ring Expressway. The method proposed in this paper can be used in the study of tourism behavior patterns and route mining in other regions, and the results of this paper can provide a basis for the optimization of the spatial pattern and route planning of red tourism in Zunyi City.
表1 遵义市红色旅游时空行为模式统计信息Tab. 1 Statistical information on the spatial-temporal behavior pattern of red tourism in Zunyi City |
模式 | 平均旅游距离/km | 平均旅游时长/h | 主要分布区域 | 主要游览景区 | 行游比 |
---|---|---|---|---|---|
“红色+购物娱乐” | 12.03 | 13.60 | 汇川区、红花岗区、 播州区 | 遵义会议会址、遵义毛主席旧址、中国红色旅游第一街、遵义红军烈士陵园等 | 1.32 |
“红色+历史文化” | 16.69 | 3.45 | 赤水市、习水县 | 女红军纪念馆、四渡赤水纪念馆、中国女红军纪念馆等 | 1.54 |
“红色+登山旅游” | 15.35 | 1.82 | 赤水市 | 丙安红一军团陈列馆、四渡赤水红军烈士陵园等 | 0.39 |
“红色+生态休闲” | 18.42 | 2.72 | 汇川区、桐梓县 | 娄山关、红色拓展园等 | 0.72 |
“红色+古镇旅游” | 6.73 | 0.90 | 余庆县 | 万丈坑红军烈士墓等 | 0.14 |
“红色+乡村旅游” | 16.84 | 12.65 | 播州区、仁怀市 | 苟坝会议旧址等 | 0.34 |
[1] |
习近平. 用好红色资源,传承好红色基因把红色江山世世代代传下去[J]. 求知, 2021(6):4-10.
[
|
[2] |
中华人民共和国国家发展和改革委员会. 2004—2010年全国红色旅游发展规划纲要[Z]. 2004-12-29.
[ National Development and Reform Commission. Outline of National Red Tourism Development Plan 2004-2010[Z]. 2004-12-29. ]
|
[3] |
中华人民共和国国家发展和改革委员会. 关于印发全国红色旅游经典景区名录的通知[Z]. 2016-12-30.
[ National Development and Reform Commission. Notice on the issuance of the national Red Tourism classic scenic spots list[Z]. 2016-12-30. ]
|
[4] |
中华人民共和国国家发展和改革委员会. “十四五”旅游业发展规划[Z]. 2022-03-25.
[ National Development and Reform Commission. The 14th Five-Year Plan for Tourism Development[Z]. 2022-03-25. ]
|
[5] |
国务院. 关于新时代支持革命老区振兴发展的意见[Z]. 2021-02-20.
[ The State Council. Opinions on Supporting the revitalization and development of Old Revolutionary Base Areas in the New Era[Z]. 2021-02-20. ]
|
[6] |
中国政府网. “建党百年红色旅游百条精品线路”[EB/OL]. http://www.gov.cn/2021-06-01.
[ The Chinese government net. "The founding of the red tourism one hundred one hundred fine lines"[EB/OL]. http://www.gov.cn/2021-06-01. ]
|
[7] |
|
[8] |
丁新军, 吴佳雨, 粟丽娟, 等. 国际基于时间地理学的旅游者行为研究探索与实践[J]. 经济地理, 2016, 36(8):183-188,201.
[
|
[9] |
|
[10] |
|
[11] |
王章郡, 方忠权. 基于GPS的徒步旅游空间行为模式及其演变特征 ——以江西省武功山为例[J]. 地域研究与开发, 2021, 40(6):118-122,146.
[
|
[12] |
刘培学, 廖茂林, 张捷, 等. 山岳型景区游客轨迹聚类与体验质量差异研究——以世界遗产地三清山为例[J]. 旅游学刊, 2018, 33(5):56-67.
[
|
[13] |
|
[14] |
|
[15] |
|
[16] |
唐弘久, 保继刚. 我国主要入境客源地游客的时空特征及影响因素[J]. 经济地理, 2018, 38(9):222-230,239.
[
|
[17] |
杨钊, 刘永婷, 秦金芳, 等. 长三角游乐型主题公园客流时空分布特征及其影响因素分析——以上海欢乐谷、常州恐龙园、芜湖方特为例[J]. 自然资源学报, 2021, 36(3):722-736.
[
|
[18] |
阮文奇, 张舒宁, 李勇泉, 等. 中国赴泰旅游需求时空分异及其影响因素[J]. 旅游学刊, 2019, 34(5):76-89.
[
|
[19] |
文娜娟, 孙凤芝, 贾衍菊. 时空行为模式对景区游客旅游消费的影响研究——以台儿庄古城为例[J]. 干旱区资源与环境, 2022, 36(2):171-177.
[
|
[20] |
|
[21] |
|
[22] |
黄潇婷. 基于时间地理学的景区旅游者时空行为模式研究——以北京颐和园为例[J]. 旅游学刊, 2009, 24(6):82-87.
[
|
[23] |
汪丽, 曹小曙, 李涛. 不同出游时间视角下游客流动网络结构及其分异特征——以西安市为例[J]. 地理科学, 2021, 41(8):1437-1447.
[
|
[24] |
王润源, 程绍文. 基于数字足迹的广州市旅游者时空行为特征研究[J/OL]. 资源开发与市场, 2022:1-14.(2022-07-18). https://kns.cnki.net/kcms/detail/51.1448.N.20220715.1128.006.html
[
|
[25] |
黄潇婷. 基于GPS与日志调查的旅游者时空行为数据质量对比[J]. 旅游学刊, 2014, 29(3):100-106.
[
|
[26] |
黄潇婷, 李玟璇, 张海平, 等. 基于GPS数据的旅游时空行为评价研究[J]. 旅游学刊, 2016, 31(9):40-49.
[
|
[27] |
梁嘉祺, 姜珊, 陶犁. 旅游者时空行为模式与难忘旅游体验关系研究[J]. 旅游学刊, 2021, 36(10):98-112.
[
|
[28] |
张文佳, 季纯涵, 谢森锴. 复杂网络视角下时空行为轨迹模式挖掘研究[J]. 地理科学, 2021, 41(9):1505-1514.
[
|
[29] |
钟炜菁, 王德, 谢栋灿, 等. 上海市人口分布与空间活动的动态特征研究——基于手机信令数据的探索[J]. 地理研究, 2017, 36(5):972-984.
[
|
[30] |
廖嘉欣, 吴启用, 兰小机, 等. 基于WiFi探针数据的城市出行轨迹提取[J]. 地球信息科学学报, 2021, 23(11):1946-1955.
[
|
[31] |
徐敏, 曹芳东, 朱海珠. 基于地理标记照片数据挖掘的游客流动特征及其形成机制——以苏州为例[J]. 经济地理, 2020, 40(4):223-231.
[
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
焦萍, 马宁远, 段雅馨, 等. 基于出租车订单轨迹数据的城市居民出行需求区域挖掘[J]. 长安大学学报(自然科学版), 2022, 42(4):108-117.
[
|
[37] |
|
[38] |
|
[39] |
赵斌, 韩晶晶, 史覃覃, 等. 语义轨迹建模与挖掘研究进展[J]. 地球信息科学学报, 2020, 22(4):842-856.
[
|
[40] |
唐梦梦, 吉根林, 赵斌. 利用MapReduce的异常轨迹检测并行算法[J]. 地球信息科学学报, 2015, 17(5):523-530.
[
|
[41] |
蔡明昕, 孙晶, 王斌. 多角度语义轨迹相似度计算模型[J]. 计算机科学与探索, 2021, 15(9):1632-1640.
[
|
[42] |
初晨, 张恒才, 陆锋. 大型商场顾客消费行为轨迹推断[J]. 地球信息科学学报, 2022, 24(6):1034-1046.
[
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
中华人民共和国文化和旅游部. 贵州:发展红色旅游传承红色记忆[EB/OL]. https://www.mct.gov.cn/whzx/qgwhxxlb/gz/202001/t20200110_850252.htm2020-01-10.
[ Ministry of Culture and Tourism of the People's Republic of China. Guizhou: Developing red tourism and inheriting red memories[EB/OL]. https://www.mct.gov.cn/whzx/qgwhxxlb/gz/202001/t20200110_850252.htm2020-01-10. ]
|
[51] |
中华人民共和国中央人民政府. 关于印发全国红色旅游经典景区名录的通知[EB/OL]. http://www.gov.cn/xinwen/2016-12/30/content_5154944.htm2016-12-30.
[ Central People's Government of the People's Republic of China. Notice on the issuance of the national red tourism classic scenic spot List[EB/OL]. http://www.gov.cn/xinwen/2016-12/30/content_5154944.htm2016-12-30. ]
|
[52] |
中华人民共和国国家发展和改革委员会. 国家发展改革委印发革命老区振兴发展2022年工作要点[EB/OL]. https://www.ndrc.gov.cn/fggz/202204/t20220415_1322117.html?code=&state=1232022-04-15.
[ National Development and Reform Commission, PRC. The National Development and Reform Commission has published key work points for the revitalization and development of old revolutionary base areas in 2022[EB/OL]. https://www.ndrc.gov.cn/fggz/202204/t20220415_1322117.html?code=&state=1232022-04-15. ]
|
[53] |
中华人民共和国中央人民政府. 四部门联合推出“建党百年红色旅游百条精品线路”[EB/OL]. http://www.gov.cn/xinwen/2021-06/01/content_5614841.htm2021-06-01.
[ Central People's Government of the People's Republic of China. Four departments jointly launch "100 high-quality Red Tourism Routes for the Centennial of the Founding of the Party"[EB/OL]. http://www.gov.cn/xinwen/2021-06/01/content_5614841.htm2021-06-01. ]
|
[54] |
遵义市文化旅游局. 盘点五一小长假丨遵义:红色游热度不减 “微旅游”成为主流[EB/OL]. http://wtlyj.zunyi.gov.cn/xwzx/bmyw/202205/t20220506_73786704.html2022-05-06.
[ Zunyi Culture and Tourism Bureau. In Zunyi, the popularity of "micro tourism" has become the mainstream during the May Day holiday[EB/OL]. http://wtlyj.zunyi.gov.cn/xwzx/bmyw/202205/t20220506_73786704.html2022-05-06. ]
|
[55] |
贵州人大网. 体验红色文旅感悟长征精神[EB/OL]. http://www.gzrd.gov.cn/2022-05-20.
[ Guizhou people's congress mesh. Experience red brigade Feel the long march spirit[EB/OL]. http://www.gzrd.gov.cn/2022-05-20. ]
|
[56] |
遵义市文化旅游局. 遵义市文化和旅游“十四五”专项规划[Z]. http://wtlyj.zunyi.gov.cn/zwgk/fdzdgknr/ghxx/202209/P020220920556398239828.pdf2022-09.
[ Zunyi Culture and Tourism Bureau. "14th Five-Year Plan" special plan of Culture and Tourism of Zunyi City[Z]. http://wtlyj.zunyi.gov.cn/zwgk/fdzdgknr/ghxx/202209/P020220920556398239828.pdf2022-09. ]
|
[57] |
葛倩, 侯守明, 赵文涛. 基于卡尔曼滤波和改进DBSCAN聚类组合的GPS定位算法[J]. 全球定位系统, 2021, 46(1):28-35.
[
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
杨喜平, 方志祥. 移动定位大数据视角下的人群移动模式及城市空间结构研究进展[J]. 地理科学进展, 2018, 37(7):880-889.
[
|
[65] |
|
/
〈 |
|
〉 |