基于复杂网络的鼓浪屿旅游街区关联规则识别与特征分析
吴莞姝(1988— ),女,河南商丘人,副教授,硕导,主要从事大数据分析、城市规划技术与方法研究。 E-mail: wuwanshu131@163.com。 |
Copy editor: 蒋树芳 黄光玉
收稿日期: 2023-12-23
修回日期: 2024-02-05
网络出版日期: 2024-03-27
基金资助
国家自然科学基金项目(51908229)
Identification and Feature of Association Rules of Tourist Blocks in Gulangyu Islet Based on Complex Network
Received date: 2023-12-23
Revised date: 2024-02-05
Online published: 2024-03-27
Supported by
National Natural Science Foundation of China(51908229)
基于复杂网络分析游客空间行为并挖掘旅游街区之间的关联特征,可以发现用地与功能之间显性和隐性的关联规则,精准识别旅游区用地空间结构,深入掌握旅游区发展现状,为智慧旅游与土地精细化转型提供支撑。本研究以世界文化遗产鼓浪屿为例,基于LBS大数据,使用复杂网络构建游客空间行为网络,利用关联规则分析重要节点的关联特征,进而使用用户画像数据,分析基于不同性别、年龄和客源地游客空间行为的街区关联规则。研究发现,“复杂网络+关联规则”算法可以挖掘游客随机行为中的隐藏规律,有效剖析旅游街区之间显性和隐性的关联规则。在游客空间行为轨迹网络中,各街区兼具“中心”与“枢纽”作用。既服务于本地游客又服务于外地游客的热门旅游街区表现出强关联规则。对外地游客具有较强吸引力的热门景点表现出较高的支持度,具有特色的旅游设施用地表现出较高的提升度。具有同质性的旅游街区之间关联性较强,人口特征差异对旅游街区关联规则影响显著。本研究可为城市更新背景下的旅游区用地整合、结构优化和游览线路调整提供决策参考,对于构建智慧旅游体系具有现实意义。
吴莞姝 , 薛影 , 赵凯 , 钮心毅 , 党煜婷 . 基于复杂网络的鼓浪屿旅游街区关联规则识别与特征分析[J]. 地球信息科学学报, 2024 , 26(2) : 440 -459 . DOI: 10.12082/dqxxkx.2024.230791
Spatial behavior reflects tourists' choice and preference for the land and function of tourist areas, which is very important for the management decision of tourist destinations. Based on the complex network analysis of tourists' spatial behavior and mining the correlation characteristics between tourist blocks, the explicit and implicit association rules between land use and function can be explored, the spatial structure of tourist areas can be accurately identified, and the development status of tourist areas can be deeply grasped, which provides support for smart tourism and fine land transformation. Taking Gulangyu Island, a world cultural heritage, as a case, this study extracts tourists' spatial behavior through location-based service big data, analyzes the characteristics of tourists' trajectory network by using complex network, explores the correlation characteristics between the internal land use of tourist areas based on tourists' spatial behavior by using association rule algorithm, and then analyzes the block association rules based on tourists' spatial behavior of different gender, age and source areas by using user portrait data. It is found that the algorithm of "complex network + association rules" can mine the hidden rules in tourists' random behavior and effectively analyze the explicit and implicit association rules between tourist blocks. In the trajectory network of tourists' spatial behavior, each block has both the functions of "center" and "hub". Popular tourist blocks that serve both local tourists and foreign tourists show strong association rules. Popular scenic spots with strong attraction to foreign tourists show high support, and the land for tourist facilities with characteristics shows high promotion. There is a strong correlation between homogeneous tourist blocks, and the difference of population characteristics has a significant impact on the association rules of tourist blocks. Theoretically, this study can enrich the cognition of tourism behavior, especially the relevance of land use caused by behavior, and construct association rules according to different demographic characteristics to supplement the demonstration of tourist demographic characteristics; In terms of methods, this study comprehensively uses complex network and association rule algorithm, which can more accurately fit the node and hierarchical structure of tourist behavior network, mine land association rules that are difficult to find by traditional methods, and provide new ideas for the coupling analysis of tourist behavior and tourist area land; In practice, based on the spatial behavior of tourists, the spatial structure of land use in tourist areas can be accurately identified, the development status of tourist areas can be more deeply grasped, the functional layout can be optimized, and the tourist facilities can be improved, thus providing support for smart tourism and fine land transformation.
[1] |
|
[2] |
|
[3] |
林岚, 许志晖, 丁登山. 旅游者空间行为及其国内外研究综述[J]. 地理科学, 2007, 27(3):434-439.
[
|
[4] |
刘艳平, 保继刚, 黄应淮, 等. 基于GPS数据的自驾车游客时空行为研究——以西藏为例[J]. 世界地理研究, 2019, 28(1):149-160.
[
|
[5] |
杨敏, 李君轶, 杨利. 基于旅游数字足迹的城市入境游客时空行为研究——以成都市为例[J]. 旅游科学, 2015, 29(3):59-68.
[
|
[6] |
黄潇婷, 张晓珊, 赵莹. 大陆游客境外旅游景区内时空行为模式研究——以香港海洋公园为例[J]. 资源科学, 2015, 37(11):2140-2150.
[
|
[7] |
张丽娜, 李仁杰, 张军海, 等. 位置照片表征的景区游客拍照行为时空模式[J]. 旅游科学, 2020, 34(1):88-103.
[
|
[8] |
荣慧芳, 陶卓民, 李涛, 等. 基于网络数据的苏南乡村旅游客源市场时空特征及影响因素分析[J]. 地理与地理信息科学, 2020, 36(6):71-77.
[
|
[9] |
吴莞姝, 党煜婷, 钮心毅. 基于手机定位数据的游客步行行为特征及与旅游区功能布局关系研究[J]. 地球信息科学学报, 2023(6):1-17.
[
|
[10] |
苏红霞, 张雪, 艾欣, 等. 基于UGC数据的乌兹别克斯坦国际游客行为时空特征研究[J]. 世界地理研究, 2019, 28(3):213-222.
[
|
[11] |
杨兴柱, 蒋锴, 陆林. 南京市游客路径轨迹空间特征研究——以地理标记照片为例[J]. 经济地理, 2014, 34(1):181-187.
[
|
[12] |
李渊, 刘嘉伟, 严泽幸, 等. 基于卫星定位导航数据的景区旅游者空间行为模式研究——以鼓浪屿为例[J]. 中国园林, 2019, 35(1):73-77.
[
|
[13] |
张骏, 古风, 卢凤萍. 城市旅游空间行为路径分析及优化——以南京市为例[J]. 地理与地理信息科学, 2011, 27(1):85-89.
[
|
[14] |
|
[15] |
黄潇婷. 基于时间地理学的景区旅游者时空行为模式研究——以北京颐和园为例[J]. 旅游学刊, 2009, 24(6):82-87.
[
|
[16] |
吴静, 杨兴柱, 孙井东. 基于新地理信息技术的南京市游客流动性空间特征研究[J]. 人文地理, 2015, 30(2):148-154.
[
|
[17] |
王章郡, 温碧燕, 方忠权, 等. 徒步旅游者的行为模式演化及群体特征分异——基于 “方法-目的链” 理论的解释[J]. 旅游学刊, 2018, 33(3):105-115.
[
|
[18] |
张子昂, 黄震方, 靳诚, 等. 基于微博签到数据的景区旅游活动时空行为特征研究——以南京钟山风景名胜区为例[J]. 地理与地理信息科学, 2015, 31(4):121-126.
[
|
[19] |
苏红霞. 英国旅游者出游年龄规律研究[J]. 人文地理, 2012, 27(1):156-160.
[
|
[20] |
钟章奇, 李山, 张秀云, 等. 旅游者中位年龄的几个市场指示意义[J]. 旅游学刊, 2013, 28(7):73-81.
[
|
[21] |
马丽君, 何镜如, 王哲. 我国城镇人口年龄结构变化对城镇旅游发展的影响[J]. 经济地理, 2014, 34(10):157-163.
[
|
[22] |
张丽峰. 我国人口结构对旅游消费的动态影响研究[J]. 干旱区资源与环境, 2015, 29(3):193-198.
[
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
韩冬, 黄丽华. 基于旅游数字足迹的旅游流网络结构研究——以内蒙古自治区为例[J]. 干旱区资源与环境, 2018, 32(3):192-197.
[
|
[28] |
王朝辉, 汤陈松, 乔浩浩, 等. 基于数字足迹的乡村旅游流空间结构特征——以浙江省湖州市为例[J]. 经济地理, 2020, 40(3):225-233,240.
[
|
[29] |
|
[30] |
李渊, 杨璐, 高小涵. 鼓浪屿街道空间体验分析与提升策略[J]. 规划师, 2019, 35(14):24-31.
[
|
[31] |
祖武, 李渊, 王绍森. 空间行为特征与商业业态分析——以厦门鼓浪屿龙头路为例[J]. 华中建筑, 2019, 37(9):88-93.
[
|
[32] |
|
[33] |
张凌云. 旅游地引力模型研究的回顾与前瞻[J]. 地理研究, 1989, 8(1): 76-87.
[
|
[34] |
王灿, 王德, 朱玮, 等. 离散选择模型研究进展[J]. 地理科学进展, 2015, 34(10):1275-1287.
[
|
[35] |
|
[36] |
|
[37] |
张妍妍, 李君轶, 杨敏. 基于旅游数字足迹的西安旅游流网络结构研究[J]. 人文地理, 2014, 29(4):111-118.
[
|
[38] |
|
[39] |
|
/
〈 |
|
〉 |