利用ECOSTRESS探究LCZ类间和类内城市热环境日动态变化
张伟伟(1993— ),女,河北邢台人,硕士生,主要研究方向为城市热环境。E-mail: zhangwwtju@163.com |
Copy editor: 蒋树芳
收稿日期: 2023-08-31
修回日期: 2023-10-10
网络出版日期: 2024-03-31
基金资助
国家自然科学基金项目(52270187)
天津市自然科学基金项目(21JCYBJC00390)
天津华北地质勘查局B类科研项目(HK2023-B02)
Exploring Diurnal Dynamic Variations of inter- and intra-LCZ Urban Thermal Environment with ECOSTRESS
Received date: 2023-08-31
Revised date: 2023-10-10
Online published: 2024-03-31
Supported by
National Natural Science Foundation of China(52270187)
Natural Science Foundation of Tianjin, China(21JCYBJC00390)
Class B Scientific Research Project of Tianjin North China Geological Exploration Bureau(HK2023-B02)
在全球气候变暖与城市化进程加快的背景下,城市热环境受到广泛关注。了解城市热环境时空变化和城市空间形态对城市局地气候的影响对于缓解城市热岛效应至关重要。ECOSTRESS在昼夜不同时刻获取高时间分辨率地表温度(Land Surface Temperature, LST)为从精细化时空尺度对城市热环境进行动态评估提供了数据支持。本文基于局地气候区(Local Climate Zones, LCZ)视角,利用ECOSTRESS LST数据探究了北京市六环内夏季地表城市热岛强度(Surface Urban Heat Island Intensity, SUHII)的日尺度时空变化特征以及LCZ类间和类内SUHII差异。结果表明:① 研究区夏季SUHII具有时空异质性,清晨6时左右, SUHII最低,上午10时左右, SUHII达到最高,下午SUHII逐渐下降,傍晚18时左右开始上升, 21时左右达到夜间最高值; ② 在日尺度上,不同类型LCZ表现出显著的热源/汇角色差异。建筑类型LCZ(除LCZ 9)和自然类型LCZ E~F整体上为热源,LCZ 9和LCZ B~C整体上为热汇,LCZ A和LCZ G存在昼夜源汇角色变化; ③ LCZ类内SUHII表现出显著的昼夜和类型差异。LCZ类内SUHII差异在清晨6时左右最小,在下午13时左右达到最大值。建筑类型LCZ中,低层建筑类内SUHII差异总体上高于中高层建筑。自然类型LCZ中,LCZ C和LCZ E类内SUHII差异相对较小,而LCZ D、LCZ F和LCZ G类内SUHII差异相对较大; ④ LCZ类型表现出昼夜不同的热特性和源汇角色变化。LCZ G存在昼夜源汇变化,夜间呈现出明显的城市热源特性。本文所采用的10个时刻的ECOSTRESS LST数据克服了以往利用单一固定时刻的LST数据对于SUHII的高估和低估,所得到的LCZ类间和类内SUHII差异对比结果降低了城市热环境定量研究的不确定性,并为城市热环境源汇景观设计的昼夜权衡提供了理论依据和实践支持。
张伟伟 , 贾若愚 , 田明 , 徐新良 , 刘佳雯 , 韩冬锐 , 贺曈 , 孙宗耀 , 从辉 , 乔治 . 利用ECOSTRESS探究LCZ类间和类内城市热环境日动态变化[J]. 地球信息科学学报, 2024 , 26(3) : 679 -692 . DOI: 10.12082/dqxxkx.2024.230511
In the context of global warming and accelerated urbanization, urban thermal environment has received widespread attention. Understanding the spatiotemporal changes of urban thermal environment and the impact of urban spatial form on urban local climate is crucial for alleviating the urban heat island effect. ECOSTRESS can generate Land Surface Temperature (LST) with high temporal resolution at different times of day and night, providing an opportunity for dynamic evaluation of urban thermal environment from a fine spatiotemporal scale. This paper explores the spatiotemporal changes of surface urban heat island intensity (SUHII) within Beijing's sixth ring road based on ECOSTRESS LST data, as well as the SUHII differences of inter- and intra-LCZ at different times of day and night, to investigate the impact of different urban landscapes. The results show that: (1) The SUHII of the study area has spatiotemporal heterogeneity. At 6 am, the SUHII is the lowest; at 10 am, the SUHII reaches its maximum; and SUHII gradually decreases in the afternoon and begins to rise around 6 pm, reaching its nighttime maximum around 9 pm; (2) During the daytime, LCZs exhibit significant differences in source and sink. Built-up LCZs (excluding LCZ 9) and natural LCZs (LCZ E~F) are generally sources, LCZ 9 and LCZ B~C are generally sinks, and LCZ A and LCZ G exhibit diurnal variations in source and sink; (3) Intra-LCZ SUHII exhibits significant day/night and type differences. The intra-LCZ SUHII differences are the lowest around 6 am and reach maximum around 1 pm. In the built-up LCZs, the intra-LCZ SUHII differences in low rise buildings are generally larger than those in mid to high rise buildings. In the natural LCZs, the intra-LCZ SUHII differences in LCZ C and LCZ E are relatively low, while the intra-LCZ SUHII differences in LCZ D, LCZ F, and LCZ G are relatively large; (4) The LCZs exhibit different thermal characteristics and changes in their roles as source and sink during day and night. LCZ G exhibits diurnal changes in source and sink, water bodies exhibit significant source characteristics at nighttime. The use of ECOSTRESS LST data from 10 different times of the day in this paper overcome the overestimation and underestimation of SUHII using only a single fixed time LST data in the past studies. The comparison results of inter- and intra-LCZ SUHII differences obtained reduce the uncertainty of quantitative research on urban thermal environment, and provide theoretical basis and practical support for the day and night balance of urban thermal environment source and sink landscape design.
表1 LCZ体系的基本类型和城市形态指标[14]Tab. 1 Standard types and spatial morphological indicators of the LCZ scheme |
类别名称 | 示意图 | SVF | AR | BSF/% | ISF/% | PSF/% | HRE/m |
---|---|---|---|---|---|---|---|
LCZ 1 紧凑高层建筑 | ![]() | 0.2~0.4 | >2 | 40~60 | 40~60 | <10 | >25 |
LCZ 2 紧凑中层建筑 | ![]() | 0.3~0.6 | 0.75~2.00 | 40~70 | 30~50 | <20 | 10~25 |
LCZ 3 紧凑低层建筑 | ![]() | 0.2~0.6 | 0.75~1.50 | 40~70 | 20~50 | <30 | 3~10 |
LCZ 4 开阔高层建筑 | ![]() | 0.5~0.7 | 0.75~1.25 | 20~40 | 30~40 | 30~40 | >25 |
LCZ 5 开阔中层建筑 | ![]() | 0.5~0.8 | 0.30~0.75 | 20~40 | 30~50 | 20~40 | 10~25 |
LCZ 6 开阔低层建筑 | ![]() | 0.6~0.9 | 0.30~0.75 | 20~40 | 20~50 | 30~60 | 3~10 |
LCZ 7 轻质低层建筑 | ![]() | 0.2~0.5 | 1.0~2.0 | 60~90 | <20 | <30 | 2~4 |
LCZ 8 大型低层建筑 | ![]() | >0.7 | 0.1~0.3 | 30~50 | 40~50 | <20 | 3~10 |
LCZ 9 零散低层建筑 | ![]() | >0.8 | 0.10~0.25 | 10~20 | <20 | 60~80 | 3~10 |
LCZ 10 工业厂房 | ![]() | 0.6~0.9 | 0.2~0.5 | 20~30 | 20~40 | 40~50 | 5~15 |
LCZ A 茂密树林 | ![]() | <0.4 | >1 | <10 | <10 | >90 | 3~30 |
LCZ B 稀疏树林 | ![]() | 0.5~0.8 | 0.25~0.75 | <10 | <10 | >90 | 3~15 |
LCZ C 灌木或矮树 | ![]() | 0.7~0.9 | 0.25~1.00 | <10 | <10 | >90 | <2 |
LCZ D 低矮植被 | ![]() | >0.9 | <0.1 | <10 | <10 | >90 | <1 |
LCZ E 裸露岩石或人工地面 | ![]() | >0.9 | <0.1 | <10 | >90 | <10 | <0.25 |
LCZ F 裸土或沙地 | ![]() | >0.9 | <0.1 | <10 | <10 | >90 | <0.25 |
LCZ G 水体 | ![]() | >0.9 | <0.1 | <10 | <10 | >90 | — |
注: SVF为Sky View Factor天空开阔度; AR为Aspect Ratio高宽比; BSF为Building Surface Fraction建筑覆盖率; ISF为Impervious Surface Fraction下垫面不透水面比例; PSF为Pervious Surface Fraction下垫面透水面比例; HRE为Height of Roughness Elements地表覆盖物高度/m。 |
表2 所选地表温度数据采集日期的天气情况Tab. 2 Weather conditions of selected LST data collection dates |
日期 | 时刻(北京时间) | 天气 | 平均温度/℃ | 气象条件 |
---|---|---|---|---|
2022-05-22 | 00:54 | 晴 | 27 | 西风2级 |
2020-07-15 | 04:11 | 晴 | 28 | 西南风2级 |
2022-07-07 | 06:29 | 晴 | 29 | 南风2级 |
2023-06-15 | 08:00 | 晴 | 30 | 北风3级 |
2019-09-02 | 09:31 | 晴 | 26 | 南风2级 |
2020-08-11 | 10:42 | 晴 | 29 | 西南风2级 |
2022-06-18 | 13:41 | 晴 | 28 | 南风2级 |
2022-05-29 | 15:13 | 晴 | 26 | 西北风2级 |
2022-07-21 | 18:21 | 晴 | 28 | 东南风2级 |
2022-05-29 | 21:43 | 晴 | 26 | 西北风2级 |
表3 不同LCZ在昼夜不同时刻的类内地表城市热岛强度差异Tab. 3 The SUHII differences of intra-LCZ at different times of day and night (℃) |
LCZ类型 | 00:54 | 04:11 | 06:29 | 08:00 | 09:31 | 10:42 | 13:41 | 15:13 | 18:21 | 21:43 | 日平均值 |
---|---|---|---|---|---|---|---|---|---|---|---|
LCZ 1 | 1.06 | 0.77 | 0.43 | 1.00 | 1.31 | 1.89 | 2.16 | 1.50 | 0.75 | 0.69 | 1.16 |
LCZ 2 | 1.03 | 0.87 | 0.42 | 0.87 | 1.18 | 1.82 | 2.33 | 1.38 | 0.78 | 0.81 | 1.15 |
LCZ 3 | 1.39 | 1.20 | 0.60 | 0.99 | 1.56 | 3.07 | 2.97 | 1.73 | 1.49 | 1.58 | 1.66 |
LCZ 4 | 1.08 | 1.02 | 0.46 | 0.95 | 1.22 | 1.90 | 2.42 | 1.64 | 0.95 | 0.89 | 1.25 |
LCZ 5 | 1.21 | 1.10 | 0.55 | 1.04 | 1.38 | 2.17 | 2.75 | 1.80 | 1.21 | 1.10 | 1.43 |
LCZ 6 | 1.57 | 1.14 | 0.66 | 1.26 | 1.69 | 2.37 | 3.28 | 2.24 | 1.47 | 1.65 | 1.73 |
LCZ 8 | 1.42 | 1.19 | 0.62 | 1.30 | 1.84 | 3.09 | 3.17 | 2.04 | 1.44 | 1.65 | 1.78 |
LCZ 9 | 1.22 | 0.85 | 0.75 | 1.48 | 1.73 | 1.75 | 3.33 | 2.76 | 1.10 | 1.70 | 1.67 |
LCZ 10 | 0.87 | 0.98 | 0.73 | 1.16 | 1.15 | 1.49 | 2.15 | 1.69 | 0.96 | 0.80 | 1.20 |
LCZ A | 1.02 | 0.89 | 1.24 | 1.43 | 1.52 | 1.51 | 2.26 | 2.47 | 1.58 | 1.03 | 1.50 |
LCZ B | 1.52 | 1.21 | 0.93 | 1.33 | 1.43 | 1.96 | 2.93 | 2.59 | 1.48 | 1.53 | 1.69 |
LCZ C | 0.86 | 0.76 | 0.36 | 0.58 | 1.54 | 0.74 | 2.35 | 1.01 | 0.72 | 1.96 | 1.09 |
LCZ D | 1.60 | 1.24 | 0.77 | 1.77 | 1.74 | 2.22 | 3.65 | 2.99 | 1.47 | 1.92 | 1.94 |
LCZ E | 0.97 | 1.36 | 0.48 | 0.87 | 0.99 | 1.55 | 2.10 | 0.82 | 1.44 | 1.34 | 1.19 |
LCZ F | 1.89 | 1.59 | 0.81 | 2.36 | 1.60 | 3.58 | 3.60 | 2.90 | 2.26 | 2.14 | 2.27 |
LCZ G | 1.28 | 1.26 | 1.16 | 1.24 | 1.68 | 2.44 | 3.53 | 2.98 | 1.34 | 1.33 | 1.82 |
类型平均值 | 1.25 | 1.09 | 0.69 | 1.23 | 1.47 | 2.10 | 2.81 | 2.03 | 1.28 | 1.38 | 1.53 |
[1] |
乔治, 陈嘉悦, 王楠, 等. 基于MSPA和电路理论的京津冀城市群热环境空间网络[J]. 环境科学, 2023, 44(6):3034-3042.
[
|
[2] |
IPCC. AR6 Synthesis Report: Climate Change 2023[EB/OL]. 2023-03-20) [2023-08-20].
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
刘宇翔, 杨英宝, 胡佳, 等. 基于长时序MODIS数据的中国城市昼夜热岛强度时空特征[J]. 地球信息科学学报, 2022, 24(5):981-995.
[
|
[8] |
|
[9] |
江斯达, 占文凤, 杨俊, 等. 局地气候分区框架下城市热岛时空分异特征研究进展[J]. 地理学报, 2020, 75(9):1860-1878.
[
|
[10] |
|
[11] |
|
[12] |
赵海月, 胡淼, 朱建宁, 等. 高密度中心城区蓝绿空间冷岛效应及其影响因素—以北京五环路以内地区为例[J]. 生态学报, 2023, 43(12):4904-4919.
[
|
[13] |
周伟奇, 田韫钰. 城市三维空间形态的热环境效应研究进展[J]. 生态学报, 2020, 40(2):416-427.
[
|
[14] |
|
[15] |
王亚莎, 詹庆明, 欧阳婉璐. 城市局地气候区的构建及其城市功能形态特征分析[J]. 城市建筑, 2020, 17(1):5-13.
[
|
[16] |
|
[17] |
王煜, 唐力, 朱海涛, 等. 基于多源遥感数据的城市热环境响应与归因分析—以深圳市为例[J]. 生态学报, 2021, 41(22):8771-8782.
[
|
[18] |
江颂, 彭建, 董建权, 等. 地表城市热岛效应的概念内涵与定量刻画[J]. 地理学报, 2022, 77(9):2249-2265.
[
|
[19] |
|
[20] |
|
[21] |
赵欣, 赵凯旭, 黄晓军. 基于ECOSTRESS地表温度和手机信令数据的城市人口热环境暴露风险评价—以西安市为例[J]. 地理科学进展, 2022, 41(11):2061-2072.
[
|
[22] |
廖杨思雨. 利用长时序全天候地表温度数据研究城市热岛效应[D]. 成都: 电子科技大学, 2022.
[
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
乔治, 黄宁钰, 徐新良, 等. 2003—2017年北京市地表热力景观时空分异特征及演变规律[J]. 地理学报, 2019, 74(3):475-489.
[
|
[29] |
|
[30] |
|
[31] |
黄群芳. 北京夏季高温变化特征及对城市热岛强度的影响[J]. 气象科技, 2023, 51(1):66-74.
[
|
[32] |
乔治, 孙宗耀, 孙希华, 等. 城市热环境风险预测及时空格局分析[J]. 生态学报, 2019, 39(2):649-659.
[
|
[33] |
乔治, 贺曈, 卢应爽, 等. 全球气候变化背景下基于土地利用的人类活动对城市热环境变化归因分析—以京津冀城市群为例[J]. 地理研究, 2022, 41(7):1932-1947.
[
|
[34] |
|
[35] |
|
[36] |
乔治, 卢应爽, 贺曈, 等. 城市热岛斑块遥感识别及空间扩张路径研究—以北京市为例[J]. 地理科学, 2022, 42(8):1492-1501.
[
|
[37] |
|
[38] |
|
[39] |
耿树丰, 任嘉义, 杨俊, 等. 局地气候区视角下的城市热环境研究[J]. 生态学报, 2022, 42(6):2221-2227.
[
|
[40] |
葛亚宁, 徐新良, 李静, 等. 北京城市建筑密度分布对热岛效应的影响研究[J]. 地球信息科学学报, 2016, 18(12):1698-1706.
[
|
[41] |
|
[42] |
晏海, 杨诗敏, 郭晓晖, 等. 杭州市临安区局地气候区的下垫面组成与空间结构对冬季气温的影响[J]. 西北林学院学报, 2023, 38(3):228-234,266.
[
|
[43] |
|
[44] |
赵恩灵, 邓帆, 李志远, 等. 基于局地气候区的武汉市地表热环境研究[J]. 长江流域资源与环境, 2023, 32(5):1030-1041.
[
|
[45] |
|
[46] |
孙金伟, 吴家兵, 关德新, 等. 森林与空旷地空气温湿度及土壤温度的长期对比研究[J]. 生态学杂志, 2011, 30(12):2685-2691.
[
|
[47] |
袁博. 城市三维空间形态对地表热环境的影响及热暴露风险评估[D]. 兰州: 兰州交通大学, 2022.
[
|
[48] |
刘火胜, 李思韬, 宛浩凯, 等. 基于局地气候分区的武汉市城市热岛时空分异特征[J]. 华中农业大学学报, 2023, 42(4):98-106.
[
|
[49] |
|
[50] |
黄焕春, 马原, 杨海林, 等. 特大城市通风廊道的地理设计方法探索[J]. 规划师, 2021, 37(13):66-71.
[
|
/
〈 |
|
〉 |