基于主体建模的城市暴雨洪涝灾害预警策略仿真研究
黄 晶(1986— ),女,江苏无锡人,博士,副教授,主要从事灾害风险管理与应急决策、管理科学与系统工程研究。E-mail: j_huang@hhu.edu.cn |
收稿日期: 2023-06-04
修回日期: 2023-11-30
网络出版日期: 2024-05-21
基金资助
国家自然科学基金项目(42171081)
国家自然科学基金项目(42371092)
国家自然科学基金项目(72174054)
Agent-based Modelling of Urban Rainstorm Flood Disaster Early Warning Strategy Simulation
Received date: 2023-06-04
Revised date: 2023-11-30
Online published: 2024-05-21
Supported by
National Natural Science Foundation of China(42171081)
National Natural Science Foundation of China(42371092)
National Natural Science Foundation of China(72174054)
灾害预警通过提前发布灾害信息,引导居民及时采取避灾行动,从而有效降低灾害损失和伤亡,在减灾管理中发挥重要作用。面对自然与社会耦合下的复杂洪涝灾害系统,如何考虑居民的预警响应行为,评估不同洪涝灾害预警策略有效性是当前亟待解决的问题。本文提出了基于主体建模的城市暴雨洪涝灾害预警策略仿真方法,设定基于降雨预报、基于洪涝淹没、基于人群暴露性的3种预警策略,并以深圳市福田区为例,分析不同预警策略下城市洪涝灾害风险的变化。结果表明:① 考虑洪涝灾害风险感知与个体出行决策概率的城市暴雨洪涝灾害预警策略ABM仿真模型,能够准确模拟不同洪涝灾害预警策略下居民出行响应行为及洪涝灾害风险的变化,科学、全面评估城市洪涝灾害预警策略的有效性;② 不同洪涝灾害预警策略下人群出行响应行为差异显著,导致城市暴雨洪涝灾害风险降低效果不同。面对20 a一遇的降雨情景,基于洪涝淹没和人群暴露性预警能够帮助研究区居民快速识别高危险区,从而显著降低建筑物和道路的风险;③ 不同暴雨情景下不同洪涝灾害预警策略效果不同。面对较小的降雨情景,基于洪涝淹没和基于人群暴露性的精细化预警策略下城市洪涝灾害风险降低效果更好;而面对极端暴雨情景,采用基于降雨预报的统一预警策略效果优于精细化预警策略。
黄晶 , 蔡思琴 , 庞甜甜 , 王慧敏 . 基于主体建模的城市暴雨洪涝灾害预警策略仿真研究[J]. 地球信息科学学报, 2024 , 26(5) : 1151 -1165 . DOI: 10.12082/dqxxkx.2024.230311
Disaster early warning plays an important role in disaster reduction management by proactively disseminating disaster information to guide residents in taking timely evacuation actions, thus effectively reducing disaster losses and casualties. The dynamic response process of residents to disaster early warning information and the assessment of the effectiveness of different flood disaster early warning strategies are pressing issues. This paper proposes a simulation method for urban rainstorm flood disaster early warning strategies based on Agent-Based Modeling (ABM). Firstly, three warning strategies are established: rainfall forecast-based, flood inundation-based, and population exposure-based. Secondly, individual risk perception is assessed by considering a variety of socio-demographic characteristics, and a probabilistic model of individual travel decision-making is constructed. Based on this, an agent-based model for urban flood disaster early warning strategies is developed. Finally, taking Futian District in Shenzhen, China as a case study, residents' travel behavior and flood risk are simulated and analyzed with different flood warning strategies under 20-year, 50-year, and 100-year return period rainstorm scenarios. The results show that: (1) The ABM simulation model, considering residents' perception of flood disaster risk and the probability of individual travel decision-making, accurately simulates residents' travel response behavior and changes in flood disaster risk under different warning strategies. It provides a scientific and comprehensive evaluation of the effectiveness of urban flood disaster early warning strategies; (2) Different warning strategies lead to significant differences in population travel response behavior, resulting in varying effectiveness in reducing urban rainstorm flood disaster risk. Faced with a 20-year rainfall scenario, flood inundation-based and population exposure-based early warning strategies help residents in the study area quickly identify high-risk areas, significantly reducing the risk to buildings and roads. Faced with a 20-year return period rainstorm scenario, the study area shows minimal changes in residents' travel behavior under rainfall forecast-based warnings. However, flood inundation-based, and population exposure-based warning strategies help residents rapidly identify high-risk areas, significantly reducing the number of people heading to red and orange warning zones. This results in a noticeable decrease in risks to buildings and roads; (3) Under different rainstorm scenarios, the effectiveness of various flood disaster early warning strategies varies. In the face of smaller rainstorm scenarios, refined flood disaster early warning strategies, such as flood inundation-based, and population exposure-based, demonstrate effectiveness in reducing urban flood disaster risk. However, when dealing with extreme rainstorm scenarios, adopting a unified flood disaster early warning strategy, such as rainfall forecast-based, is more effective than a refined warning strategy. Therefore, urban flood disaster early warning systems should be tailored to local conditions and varying circumstances, establishing a graded, zonal, and scenario-based warning system.
表1 洪涝灾害预警策略及划分标准Tab. 1 Flood disaster early warning strategies and classification criteria |
洪涝灾害预警策略 | 预警划分依据 | 预警等级 | 建筑物灾害预警值 |
---|---|---|---|
基于降雨预报的统一预警 (降雨预报预警) | 无降雨 | 无预警 | 0 |
10 a及以下 | 蓝色预警 | 0.2 | |
20 a | 黄色预警 | 0.4 | |
50 a | 橙色预警 | 0.6 | |
100 a及以上 | 红色预警 | 0.8 | |
基于洪涝淹没的精细化预警 (洪涝淹没预警) | 无淹没 | 无预警 | 0 |
轻度淹没 | 蓝色预警 | 0.2 | |
中度淹没 | 黄色预警 | 0.4 | |
中高度淹没 | 橙色预警 | 0.6 | |
高度淹没 | 红色预警 | 0.8 | |
基于人群暴露性的精细化预警 (人群暴露性预警) | 无威胁 | 无预警 | 0 |
低威胁 | 蓝色预警 | 0.2 | |
中威胁 | 黄色预警 | 0.4 | |
中高威胁 | 橙色预警 | 0.6 | |
高威胁 | 红色预警 | 0.8 |
表2 建筑物和道路的脆弱性值Tab. 2 Vulnerability values for buildings and roads |
脆弱性 | 类别 | 脆弱性值 |
---|---|---|
建筑物脆弱性 | 旅游绿地 | 0.1 |
居民住所 | 0.1 | |
商务办公 | 0.2 | |
餐饮购物 | 0.4 | |
教育场所 | 0.4 | |
休闲娱乐 | 0.5 | |
公共服务 | 0.5 | |
道路脆弱性 | D道路 | 1.0 |
表3 实验数据集Tab. 3 Experimental data sets |
类型 | 名称 | 描述及来源 | 年份 |
---|---|---|---|
基础地理信息数据 | 道路 | OpenStreetMap(www.openstreetmap.org) | 2022 |
土地利用类型 | EULUC-China数据(http://data.starcloud.pcl.ac.cn/zh/resource/7)[25] 主要土地利用类型(分辨率10 m×10 m) | 2018 | |
社会经济数据 | 社会人口因素 | 深圳市福田区统计局(szft.gov.cn)) | 2021 |
深圳市调查问卷(Cao, 2020)[22] | 2020 | ||
人口密度数据 | Worldpop(1 km×1 km栅格数据, https://www.worldpop.org/) | 2020 | |
历史灾情数据 | 积水点监测信息 | 积水监测站点位置、历史水深等 | 2018 |
图6 无预警和黄色预警后的百度人口热力图Fig. 6 Baidu population heat map without warning and after yellow warning |
表4 无预警和黄色预警后的人口流动变化幅度Tab. 4 Magnitude of change in population movements without warning and after yellow warning |
黄色预警(预警后1.5 h) | 无预警(同一时刻) | 变化幅度/% | |
---|---|---|---|
实际数据(人口热力值) | 45 071 | 45 741 | -1.46 |
模拟数据(Agent数量/个) | 2 354 | 2 403 | -2.04 |
表5 不同预警策略下不同类型建筑物风险区占比情况Tab. 5 The proportion of risk zones for different types of buildings under different early warning strategies |
建筑物 类型 | 风险区占比/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.2≤R<0.5 | 0.5≤R<2 | R≥2 | 总计 | |||||||||
降雨预报 预警 | 淹没 预警 | 人群暴露性 预警 | 降雨预报 预警 | 淹没 预警 | 人群暴露性 预警 | 降雨预报 预警 | 淹没 预警 | 人群暴露性 预警 | 降雨预报 预警 | 淹没 预警 | 人群暴露性 预警 | |
居民住所 | 4.9 | 14.4 | 14.6 | 1.8 | 8.0 | 9.2 | 0.0 | 1.0 | 1.4 | 6.8 | 23.4 | 25.3 |
商务办公 | 19.9 | 10.2 | 5.8 | 15.5 | 15.0 | 2.9 | 3.9 | 0.0 | 0.0 | 39.3 | 15.5 | 8.7 |
教育场所 | 22.0 | 13.2 | 13.2 | 27.5 | 7.7 | 4.4 | 8.8 | 0.0 | 0.0 | 58.2 | 20.9 | 17.6 |
餐饮购物 | 20.7 | 3.4 | 24.1 | 6.9 | 3.4 | 0.0 | 0.0 | 3.4 | 0.0 | 27.6 | 10.3 | 24.1 |
休闲娱乐 | 9.7 | 3.2 | 12.9 | 19.4 | 12.9 | 19.4 | 12.9 | 0.0 | 0.0 | 41.9 | 16.1 | 16.1 |
公共服务 | 4.5 | 3.0 | 3.0 | 4.5 | 1.5 | 4.5 | 1.5 | 0.0 | 0.0 | 10.4 | 4.5 | 9.0 |
旅游绿地 | 1.6 | 0.8 | 0.0 | 0.8 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 2.3 | 1.6 | 0.0 |
[1] |
|
[2] |
|
[3] |
World Meteorological Organization (WMO). Executive Action Plan 2023-2027[R]. Geneva: United Nations, 2022.
|
[4] |
郭桂祯, 廖韩琪, 孙宁. 我国自然灾害风险监测预警现状概述[J]. 中国减灾, 2022(3):36-39.
[
|
[5] |
曹雪健, 戚友存, 李梦迪, 等. 极端暴雨威胁下的城市内涝风险预警系统研究[J]. 大气科学, 2022, 46(4):953-964.
[
|
[6] |
徐美, 刘舒, 孙杨, 等. 利用洪涝模型进行城市内涝风险快速识别与预警[J]. 武汉大学学报·信息科学版, 2020, 45(8):1185-1194.
[
|
[7] |
王慧敏, 黄晶, 刘高峰, 等. 大数据驱动的城市洪涝灾害风险感知与预警决策研究范式[J]. 工程管理科技前沿, 2022, 41(1):35-41.
[
|
[8] |
刘志雨, 侯爱中. 洪水影响预报和风险预警理念与业务实践[J]. 水文, 2020, 40(1):1-6.
[
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
朱净萱, 戴强, 蔡俊逸, 等. 基于多智能体的城市洪涝灾害动态脆弱性计算模型构建[J]. 地球信息科学学报, 2021, 23(10):1787-1797.
[
|
[20] |
|
[21] |
周忻, 徐伟, 袁艺, 等. 灾害风险感知研究方法与应用综述[J]. 灾害学, 2012, 27(2):114-118.
[
|
[22] |
|
[23] |
张奕源, 李进龙, 罗霞, 等. 考虑决策过程与潜在异质性的居民通勤选择行为研究[J]. 交通运输系统工程与信息, 2021, 21(3):221-228,236.
[
|
[24] |
张会, 李铖, 程炯, 等. 基于“H-E-V”框架的城市洪涝风险评估研究进展[J]. 地理科学进展, 2019, 38(2):175-190.
[
|
[25] |
|
[26] |
|
[27] |
刘媛媛, 王毅, 刘洪伟, 等. 针对不同受灾体城市内涝预警指标的研究[J]. 中国防汛抗旱, 2018, 28(2):15-18.
[
|
[28] |
谭欣, 黄大全, 赵星烁, 等. 基于百度热力图的职住平衡度量研究[J]. 北京师范大学学报(自然科学版), 2016, 52(5): 622-627+534.
[
|
/
〈 |
|
〉 |