基于刷卡数据的公交-地铁换乘模式研究
严敏祖(1999— ),女,青海西宁人,硕士生,主要从交通数据挖掘与计算研究。E-mail: whuymz@whu.edu.cn |
收稿日期: 2023-11-28
修回日期: 2024-01-12
网络出版日期: 2024-05-24
基金资助
国家自然科学基金项目(42071368)
中央高校自主科研项目(2042022dx0001)
Bus-Subway Interchange Mode Research with IC Card Data
Received date: 2023-11-28
Revised date: 2024-01-12
Online published: 2024-05-24
Supported by
National Natural Science Foundation of China(42071368)
The Fundamental Research Funds for the Central Universities, China(2042022dx0001)
随着城市规模的不断扩大,城市居民通勤中混合交通模式普遍出现,即需要借助不同交通工具之间的换乘完成行程。精确提取和分析城市居民换乘行为,对城市交通模式及设施便捷性等研究具有重要意义。目前,换乘行为的提取多采用GPS(Global Positioning System)、GTFS(General Transit Feed Specification)等数据,基于步行速度或经验选取距离阈值或时间阈值,进而实现换乘行为的识别。但这种方式忽略了城市空间内公交或地铁站点密度的差异性特征,识别精度可能受到较大影响。因此,本研究基于公交地铁IC卡数据,提出了一种时间-距离阈值双约束的换乘行为识别算法,即根据公共交通刷卡数据的统计特征,实现时间和距离阈值的自动选择,进而精准提取换乘行为。在此基础上,本文根据前后半程的旅行时间/距离长短将换乘行为分为九类换乘模式:长-长换乘、长-中换乘、长-短换乘、中-长换乘、中-中换乘、中-短换乘、短-长换乘、短-中换乘、短-短换乘,并分别对其出行特征进行分析。结果表明,所有类型的换乘行为的早高峰均早于公交和地铁的出行早高峰,短-长换乘的早高峰时间甚至比一般出行的早高峰时间提前了30 min,充分说明了以换乘模式通勤的乘客需要付出更大的努力。相比之下,晚高峰出行时间则各有早晚,如长-长、长-短换乘模式晚高峰明显滞后于一般出行的晚高峰时间,更凸显了换乘群体的通勤成本负担之重。从出行距离上来说,九种换乘行为的通勤距离峰值远大于一般出行的峰值,甚至多分布于20~40 km之间。总之,本文所提出的换乘行为提取算法能够实现城市换乘行为的精确提取,结合对不同换乘行为模式的有效分析,为城市交通、城市活力、公共交通设施和城市规划等方面的研究提供有效的模型算法支撑。
严敏祖 , 董冠鹏 , 卢宾宾 . 基于刷卡数据的公交-地铁换乘模式研究[J]. 地球信息科学学报, 2024 , 26(6) : 1351 -1362 . DOI: 10.12082/dqxxkx.2024.230709
With the expansion of urban areas, a mix of transportation modes has become prevalent during the daily commutes of city dwellers. That is, commuters often need to transfer between various modes to reach their destinations. Accurate identification and analysis of these transfer behaviors are crucial for advancing urban transportation research. Current research tends to focus on distance or time thresholds, typically derived from walking speeds or anecdotal experience. However, these approaches often overlook the distinct station densities within cities. Other studies, while utilizing GPS, GTFS, and similar datasets, construct intricate transfer identification methods that lack generalizability. Against this backdrop, we introduce a time-distance dual-constraint transfer recognition algorithm. Firstly, leveraging extensive traffic IC card data, based on the statistical characteristics of the proximity distance sequences between bus or subway stations and their M neighboring stations, distance thresholds for bus-bus, bus-subway, and subway-bus transfer are detected individually. Subsequently, a filtering algorithm based on these distance thresholds is applied to daily data to produce a candidate transfer data set. Based on this, four time thresholds for each day are determined by analyzing the statistical characteristics of the transit time differences within the datasets. Finally, these dual thresholds facilitate the precise extraction of transfer behaviors. Furthermore, we establish a classification framework for these behaviors, classifying them into nine distinct transfer modes. These modes are defined based on the duration of travel time in the first and second journeys, encompassing variations including long-long, long-medium, long-short, middle-long, middle-middle, middle-short, short-long, short-middle, and short-short. We analyze these models individually for their travel characteristics. Results reveal that the morning peak for all transfer trips precedes that of buses and subways, with short-long transfers leading by up to 30 minutes. This underscores the added effort required by commuters who rely on transfers. In contrast, evening peak times vary, with certain transfer modes like long-long and long-short lagging notably behind the general evening peak. This further emphasizes the increased commuting burden associated with transfers. In terms of travel distances, the peak of regular subway travel distances is around 10 km, while that of the bus travel distances is around 1 km. The peak commuting distances for all nine transfer behaviors are greater than those of typical trips and are distributed within a range of 20~40 km. In summary, our method for extracting and analyzing transfer behaviors offers a robust and effective tool for urban transportation research, urban vitality assessment, public transportation planning, and urban planning.
表1 公交刷卡数据属性Tab. 1 Bus IC card data attribute table |
序号 | 属性 | 数据类型 | 含义 |
---|---|---|---|
1 | GRANT_CARD_CODE | int | 一卡通卡号 |
2 | DEAL_TIME | int64 | 交易时间 |
3 | LINE_CODE | int | 线路编号 |
4 | ON_STATION | int | 上车站编号 |
5 | OFF_STATION | int | 下车站编号 |
表2 地铁刷卡数据属性Tab. 2 Subway IC card data attribute table |
序号 | 属性 | 数据类型 | 含义 |
---|---|---|---|
1 | GRANT_CARD_CODE | int | 一卡通卡号 |
2 | ENTRY_TIME | int64 | 进站时间 |
3 | DEAL_TIME | int64 | 交易时间 |
4 | ENTRY_LINE_NUM | int | 进站线路编号 |
5 | ENTRY_STATION_NUM | int | 进站站点编号 |
6 | EXIT_LINE_NUM | int | 出站线路编号 |
7 | EXIT_STATION_NUM | int | 出站站点编号 |
8 | END_OF_JOURNEY | int | 旅程是否结束 |
表3 换乘行为距离阈值Tab. 3 Interchange behavior distance threshold |
换乘种类 | 距离阈值/km |
---|---|
公交-公交换乘 | 0.64 |
地铁-公交换乘 | 0.80 |
公交-地铁换乘 | 2.31 |
表4 交易时间差频率变化斜率Tab. 4 Frequency change slopes of deal time lag |
ID | 交易时间差 | 频率 | 斜率 | 斜率的变化率 |
---|---|---|---|---|
0 | 195.43 | 0.001 392 | -6.06E-06 | 1.76E-08 |
176 | 68 990.25 | 0.000 734 | -1.68E-06 | 1.12E-08 |
175 | 68 599.37 | 0.000 715 | -4.80E-08 | 4.18E-09 |
9 | 3 713.36 | 0.019 109 | 1.28E-06 | 2.84E-09 |
11 | 4 495.12 | 0.018 540 | 2.91E-06 | 2.31E-09 |
23 | 9 185.67 | 0.009 730 | 1.86E-06 | 1.73E-09 |
14 | 5 667.75 | 0.015 861 | 1.93E-06 | 1.34E-09 |
20 | 8 013.03 | 0.011 510 | 1.84E-06 | 1.21E-09 |
30 | 11 921.83 | 0.006 202 | 1.03E-06 | 1.09E-09 |
69 | 27 166.13 | 0.002 445 | 2.61E-07 | 8.38E-10 |
52 | 20 521.18 | 0.003 044 | 2.00E-07 | 8.26E-10 |
41 | 16 221.50 | 0.003 934 | 3.12E-07 | 8.02E-10 |
26 | 10 358.31 | 0.008 021 | 1.42E-06 | 7.99E-10 |
124 | 48 664.51 | 0.001 110 | 1.28E-07 | 7.16E-10 |
表5 试探性换乘行为时间区间Tab. 5 Tentative interchange behavior time interval |
换乘类型 | 阈值区间 | 时间区间 | 12小时制 |
---|---|---|---|
超短途换乘 | 下限区间 | 0 | 0 |
上限区间 | (0, 5 000] | (0, 30 min] | |
短途换乘 | 下限区间 | (0, 5 000] | (30, 50 min] |
上限区间 | (5 000, 10 000] | (35 min, 60 min] | |
中途换乘 | 下限区间 | (5 000, 10 000] | (35 min, 60 min] |
上限区间 | (10 000, 15 000] | (60 min, 90 min] | |
长途换乘 | 下限区间 | (10 000, 15 000] | (60 min, 90 min] |
上限区间 | (15 000, 20 000] | (90 min, 120 min] |
表6 试探性换乘行为时间阈值Tab. 6 Time thresholds for tentative interchange behavior |
换乘类型 | 时间差阈值范围 | 12小时制 | 时间间隔/min |
---|---|---|---|
超短途 | (0, 195] | (0, 1 min] | 1 |
短途 | (195, 9 185] | (1 min, 55 min] | 54 |
中途 | (9 185, 11 921] | (55 min, 72 min] | 17 |
长途 | (9 185,16 221] | (72 min, 97 min] | 25 |
表7 换乘行为时间区间Tab. 7 Interchange behavioral time interval |
换乘类型 | 阈值区间 | 时间区间 | 12小时制 |
---|---|---|---|
短途换乘 | 下限区间 | (0, 1 667] | (0 min, 10 min] |
上限区间 | (1 667, 5 883] | (10 min, 35 min] | |
中途换乘 | 下限区间 | (1 667, 5 883] | (10 min, 35 min] |
上限区间 | (5 833, 10 000] | (35 min, 60 min] | |
长途换乘 | 下限区间 | (5 833, 10 000] | (35 min, 60 min] |
上限区间 | (10 000, 14 167] | (60 min, 85 min] |
表8 换乘行为时间阈值Tab. 8 Time thresholds for tentative interchange behavior |
换乘类型 | 时间差阈值范围 | 12小时制 | 时间间隔/min |
---|---|---|---|
短途 | (195, 3 713] | (1 min, 22 min] | 21 |
中途 | (3 713, 9 185] | (22 min, 55 min] | 33 |
长途 | (9 185, 11 921] | (55 min, 72 min] | 17 |
表9 各换乘类型行程距离分类Tab. 9 Classification of trip distances by interchange type |
后半程换乘 类型 | 前半程行程距离自然分割/km | ||
---|---|---|---|
短距离 | 中距离 | 长距离 | |
短间隔 | (0, 8.24] | (8.24, 19.93] | (19.93, 89.38] |
中间隔 | (0, 8.05] | (8.05, 21.11] | (21.11, 89.01] |
长间隔 | (0, 7.75] | (7.75, 21.03] | (21.03, 89.01] |
[1] |
李婧怡. 基于出租房规模的北京市职住分离测度[J]. 测绘与空间地理信息, 2018, 41(5):18-23.
[
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
蒋敏. 基于IC卡数据的地铁与常规公交换乘时间分析[D]. 南京: 东南大学, 2015.
[
|
[12] |
彭晗, 韩秀华, 田振中, 等. 公交IC卡数据处理的换乘矩阵构造方法研究[J]. 交通与计算机, 2007, 25(4):32-34.
[
|
[13] |
董晓晶, 余志伟, 伏伟伟, 等. 基于GIS的公交IC卡数据处理及分析系统[J]. 地理空间信息, 2009, 7(5):124-126.
[
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
中共中央国务院. 2017:中共中央国务院关于对《北京城市总体规划(2016年-2035年)》的批复. 中华人民共和国中央人民政府官网, 2023年5月20日访问.
[ CPC Central Committee and State Council. 2017: Reply of the CPC Central Committee and State Council to the Approval of the Beijing Urban Master Plan (2016-2035). Official website of the Central People's Government of the People's Republic of China, Accessed May 20,2023.]
|
[19] |
北京市统计局. 北京市2021年国民经济和社会发展统计公报[R]. 2021.
[ Beijing Municipal Bureau of Statistics. Beijing Municipal Statistical Bulletin on National Economic and Social Development 2021[R]. 2021.
|
[20] |
中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2022.
[ Bureau of Statistics of the People's Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2022. ]
|
[21] |
中华人民共和国统计局. 中国交通年鉴[M]. 北京: 中国统计出版社, 2022.
[ Bureau of Statistics of the People's Republic of China. China Communications Yearbook[M]. Beijing: China Statistics Press, 2022. ]
|
[22] |
|
[23] |
金凤君, 靳海涛. 人文—经济地理学的学科融合和创新[J]. 地理科学进展, 2018, 37(3):309-316.
[
|
[24] |
裴韬, 刘亚溪, 郭思慧, 等. 地理大数据挖掘的本质[J]. 地理学报, 2019, 74(3):586-598.
[
|
[25] |
|
[26] |
|
[27] |
李莹, 翁小雄. 基于公交IC卡和GPS数据的换乘识别方法[J]. 广西大学学报(自然科学版), 2017, 42(2):579-586.
[
|
/
〈 |
|
〉 |