网约车出行分布时空模式及其时间序列模式识别
陈志举(1991— ),男,河南信阳人,博士,助理研究员,主要研究方向为交通大数据挖掘。E-mail: chenzhiju@zzu.edu.cn |
Copy editor: 蒋树芳 , 黄光玉
收稿日期: 2023-07-16
修回日期: 2023-10-19
网络出版日期: 2024-10-09
基金资助
国家自然科学基金项目(71871043)
国家自然科学基金青年项目(52302404)
Time Series Variation Pattern Recognition of Spatiotemporal Distribution Patterns of Ride-hailing
Received date: 2023-07-16
Revised date: 2023-10-19
Online published: 2024-10-09
Supported by
National Natural Science Foundation of China(71871043)
Youth Fund of the National Natural Science Foundation of China(52302404)
通信与移动计算技术的快速发展产生了各种出行大数据,为理解和挖掘交通时空出行特征、建设智慧城市提供了新的机会。然而,新兴移动数据规模与复杂性的显著增加也为其结构特征分析带来了挑战。本研究以六边形时空分区为基本聚类单元,提出了一种处理高维网约车出行时空模式的分析框架,通过聚类同质的出行分布群体来识别不同的时空模式。首先,将六边形分区内集计的出行分布时空特征概括为起点的需求量分布、终点的空间分布和终点的需求量分布。进一步,提出了基于时空密度峰值的快速聚类(CFSFSTDP)算法,通过计算时空相似性来识别各分区的网约车出行分布时空模式。最后,采用近邻传播算法来对各分区聚类出的出行分布时空模式的时间变化序列进行聚类分析,捕捉网约车出行分布时空模式的时间序列模式。对成都一个月的滴滴出行订单数据进行实证分析验证了该方法,分析了不同的时空模式在需求大小、位置和时间上的差异,探讨了网约车出行在不同区域的功能类型。其识别出的6类时间序列模式把握了网约车出行分布时空模式的时间连续性,有助于进一步构建网约车出行时空演化数字孪生平台。
陈志举 , 刘锴 , 王江波 . 网约车出行分布时空模式及其时间序列模式识别[J]. 地球信息科学学报, 2024 , 26(10) : 2229 -2242 . DOI: 10.12082/dqxxkx.2024.230406
The rapid development of information and communication technologies and mobile computing has generated a variety of mobility big data, providing new opportunities for understanding and exploring the spatiotemporal distribution and mobility characteristics of resident travel, and further contributing to the construction of smart cities. However, the emerging mobile data have experienced significant growth in both scale and complexity compared to traditional data, posing challenges for its structural characteristic analysis. To address these issues, this paper proposes an analytical framework to deal with the spatiotemporal distribution characteristics of high-dimensional ride-hailing travel pattern. Compared to traditional square partitions, a regular hexagon is closer to a circle, and the six adjacent hexagons connected to its edges are symmetrically equivalent, which can be more advantageous in aggregating demands with similar travel characteristics into the same partition. Therefore, hexagonal partition is selected as the basic clustering unit, and different spatiotemporal patterns are identified by clustering homogeneous travel distribution groups. Firstly, the spatiotemporal characteristics of travel distribution aggregated in the hexagonal partition are summarized into three main components: the departure demand distribution at the origin partition, the spatial distribution at the destination partition, and the arrival demand distribution at the destination partition. The spatiotemporal similarity between two partitions can be expressed as the product of these three types of distribution similarity. Furthermore, a Clustering Algorithm with Fast Search and Find of Spatiotemporal Density Peaks (CFSFSTDP) is proposed to identify the spatiotemporal patterns of ride-hailing travel distribution in each partition. The spatiotemporal distances between different partitions are obtained through the calculation of spatiotemporal similarity. Finally, affinity propagation clustering algorithm is used to perform clustering analysis on the time series variation pattern of spatiotemporal pattern of travel distribution in each partition. The time series similarity of spatiotemporal patterns between different partitions is represented by the sum of Euclidean distances between time series of each interval, and the model converges through continuous updates of attractiveness and affiliation indices. Through the empirical analysis of Didi Chuxing order data in Chengdu for one month, the validity of the method is verified. Based on the identified seven spatiotemporal distribution patterns, the differences of spatiotemporal patterns in the size, location, and time of demand are analyzed, and the functional types of ride-hailing travel in different partitions are discussed. The identified six time series patterns better grasp the time continuity of spatiotemporal patterns of ride-hailing travel distribution and help to better build the corresponding spatiotemporal evolution digital.
表1 滴滴数据集样本数据Tab. 1 Sample records from the Didi dataset |
订单ID | 开始时/s | 结束时间 | 起点经度/E° | 起点纬度/N° | 终点经度/E° | 终点纬度/N° |
---|---|---|---|---|---|---|
Oq**ol | 1477985585 | 1 477 987 675 | 104.076 | 30.767 | 104.063 | 30.589 |
Uu**re | 1478004952 | 1 478 006 217 | 104.019 | 30.689 | 104.105 | 30.663 |
Qx**ji | 1477989840 | 1 477 991 065 | 104.036 | 30.622 | 104.043 | 30.682 |
表2 不同类型时空模式特征汇总Tab. 2 Characterization of different spatiotemporal distribution pattern |
时空模式 类型 | 起点特征 | 终点特征 | 时间特征 | |||
---|---|---|---|---|---|---|
主要位置 | 主要需求类型 | 主要位置 | 主要需求类型 | |||
1 | 城郊结合区、偏远郊区 | 稀疏需求 | 中心城区 | 高需求 | 基本白天 | |
2 | 城郊结合区、中心城区 | 中等需求 | 均有覆盖 | 均有覆盖 | 全天 | |
3 | 中心城区 | 中、高需求 | 均有覆盖 | 均有覆盖 | 全天 | |
4 | 城郊结合区、偏远郊区 | 稀疏需求 | 中心城区 | 稀疏需求、中等需求 | 夜间为主 | |
5 | 偏远郊区 | 稀疏需求 | 中心城区 | 高需求 | 基本白天 | |
6 | 中心城区 | 高需求 | 偏远郊区 | 稀疏需求 | 基本白天 | |
7 | 偏远郊区 | 稀疏需求 | 中心城区 | 高需求 | 全天 |
[1] |
金盛, 苏弘扬, 张静. 融合出行拓扑与序列分析的车辆时空出行模式挖掘[J]. 交通运输系统工程与信息, 2023, 23(2):40-53.
[
|
[2] |
杨喜平, 方志祥, 赵志远, 等. 城市人群聚集消散时空模式探索分析——以深圳市为例[J]. 地球信息科学学报, 2016, 18(4):486-492.
[
|
[3] |
|
[4] |
|
[5] |
徐媛, 鞠炜奇, 杨家文, 等. 打车软件对出租汽车运营的影响——以深圳市为例[J]. 城市交通, 2017, 15(6):73-79,84.
[
|
[6] |
高永, 安健, 全宇翔. 网络约租车对出行方式选择及交通运行的影响[J]. 城市交通, 2016, 14(5):1-8.
[
|
[7] |
|
[8] |
李君轶, 唐佳, 冯娜. 基于社会感知计算的游客时空行为研究[J]. 地理科学, 2015, 35(7):814-821.
[
|
[9] |
|
[10] |
郑晓琳, 刘启亮, 刘文凯, 等. 智能卡和出租车轨迹数据中蕴含城市人群活动模式的差异性分析[J]. 地球信息科学学报, 2020, 22(6):1268-1281.
[
|
[11] |
刘菊, 许珺, 蔡玲, 等. 基于出租车用户出行的功能区识别[J]. 地球信息科学学报, 2018, 20(11):1550-1561.
[
|
[12] |
刘瑜, 郭浩, 李海峰, 等. 从地理规律到地理空间人工智能[J]. 测绘学报, 2022, 51(6):1062-1069.
[
|
[13] |
王鹏洲, 赵志远, 姚伟, 等. 基于地理流空间的巡游车与网约车人群出行模式研究[J]. 地球信息科学学报, 2023, 25(4):726-740.
[
|
[14] |
|
[15] |
|
[16] |
|
[17] |
冯琦森. 基于出租车轨迹的居民出行热点路径和区域挖掘[D]. 重庆: 重庆大学, 2016.
[
|
[18] |
刘爽. 基于时空轨迹的交通数据分析与应用[D]. 成都: 电子科技大学, 2017.
[
|
[19] |
|
[20] |
龚越. 基于车牌识别数据的交通出行特征分析[D]. 杭州: 浙江大学, 2018.
[
|
[21] |
项煜, 陈晓旭, 杨超, 等. 基于地铁售检票系统刷卡数据的乘客出行模式分析[J]. 城市轨道交通研究, 2020, 23(6):63-67.
[
|
[22] |
|
[23] |
|
[24] |
薛山, 廖一兰, 李春林, 等. 不同人口流动模式下城市传染病时空传播模型适用性研究[J]. 地球信息科学学报, 2023, 25(1):208-222.
[
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
王培晓, 张恒才, 王海波, 等. ST-CFSFDP:快速搜索密度峰值的时空聚类算法[J]. 测绘学报, 2019, 48(11):1380-1390.
[
|
[34] |
|
[35] |
|
/
〈 |
|
〉 |