基于轨迹数据的出租车潜在充电需求估计及时空特征分解
马瑞晨(1998— ),男,内蒙古乌兰察布人,博士生,主要从事交通时空大数据挖掘研究。E-mail: ruichen.ma@connect.polyu.hk |
Copy editor: 蒋树芳 , 黄光玉
收稿日期: 2024-02-04
修回日期: 2024-05-22
网络出版日期: 2024-10-09
基金资助
国家重点研发计划项目(2023YFB4301901)
国家自然科学基金项目(52472336)
国家自然科学基金项目(72371021)
Estimation of Potential Charging Demand for Taxis and Spatiotemporal Feature Decomposition Based on Trajectory Data
Received date: 2024-02-04
Revised date: 2024-05-22
Online published: 2024-10-09
Supported by
National Key Research and Development Program of China(2023YFB4301901)
National Natural Science Foundation of China(52472336)
National Natural Science Foundation of China(72371021)
在大城市出租车队电动化转型过程中,出租车充电需求呈现出充电负荷高、时空分布随机性强的特征。为精确估计出租车队完全电动化转型后的充电需求,本文提出了一种仅基于燃油出租车轨迹数据的潜在充电需求识别概念模型以及基于轨迹地图匹配的二叉树实现算法,为电动化转型滞后地区提供了新的充电需求估计范式。本文使用890辆带有电池状态字段的电动出租车轨迹数据对模型和算法进行验证,结果表明,充电区段数量、充电需求电量等指标的估计误差小于6.5%。此外,模型和算法在不同电池电量消耗阈值θ和不同空间尺度(500、1 000和10 000 m栅格)下具有较高的时空分布估计精度。在此基础上,本文提出以北京市六环内真实道路网为空间分析单元,运用奇异值分解算法对潜在充电需求时空矩阵进行分解降维,以挖掘潜在充电需求的时空特征模式。最后,运用北京市连续3 d共1 913辆出租车轨迹数据进行案例研究,结果表明,北京市出租车潜在充电需求的空间分布呈现出明显的重点区域、关键通道聚集性特征,与该区域的高出行活动强度以及长途出行相关的高密度充电需求高度吻合。分解后的充电需求呈现出常态化充电需求为主导、上下午异质性充电需求以及工作时段和非工作时段异质性充电需求为辅的时空结构特征。该分析方法有助于挖掘潜在充电需求的空间分布结构特征及时空耦合关系,为出租车队电动化转型下的充电基础设施中长期规划、电网负荷调度调节和充电需求管理等提供决策参考。
马瑞晨 , 王聘玺 , 黄爱玲 , 奇格奇 , 徐笑涵 . 基于轨迹数据的出租车潜在充电需求估计及时空特征分解[J]. 地球信息科学学报, 2024 , 26(10) : 2282 -2299 . DOI: 10.12082/dqxxkx.2024.240079
In the transition of urban taxi fleets toward electrification in large cities, the charging demand of taxis exhibits characteristics of high charging load and strong spatiotemporal randomness, with a noticeable mismatch between charging supply and demand in time and space. To accurately estimate the potential charging demand post- the full electrification of the taxi fleet, this study introduces a bottom-up conceptual framework and a binary tree algorithm based on trajectory map matching, leveraging fuel taxi trajectory data exclusively. This approach provides a new paradigm for estimating charging demands in regions lagging behind in the electrification transition. The model and algorithm are validated using trajectory data from 890 electric taxis with battery status fields (State of Charge, SOC). Results show that the estimation errors of indicators such as the number of charging segments and charging amount are less than 6.5%. Moreover, the model also exhibits high spatiotemporal distribution estimation accuracy under different parameter settings (battery depletion threshold θ) and spatial scales (with grid sizes of 500 m, 1 000 m, and 10 000 m), ensuring their applicability in real-world scenarios. Specifically, the temporal distribution error of charging amount is less than 8.5% in the best-case scenario, and over half of the charging amount within 500 m grids has a spatial distribution error less than 0.3, with 59% of the 500 m grids having an estimated error of charging segment count less than 0.3. Building upon this, the Singular Value Decomposition (SVD) algorithm is used to decompose and reduce the dimensionality of the spatiotemporal matrix of charging demands, identifying spatiotemporal patterns of potential charging demands within the real road network of Beijing's Sixth Ring Road at road level. Finally, a case study is conducted using trajectory data from 1 913 taxis in Beijing over three consecutive days from March 9th (Monday) to March 11th (Wednesday) in 2019, and the results indicate that the spatial distribution of potential charging demands for taxis in Beijing exhibits prominent clustering features in key areas and critical corridors, corresponding to high-density charging demands associated with residents' high activity levels and long-distance travel. The decomposed charging demands reveal a spatiotemporal structural pattern dominated by regular charging demands, with supplementary heterogeneity in charging demands between morning and afternoon, as well as during working and non-working hours. This analysis method assists in uncovering the spatial distribution structural characteristics of potential charging demand and spatiotemporal coupling relationships, providing decision-making references for long-term planning of charging infrastructure, grid load scheduling, and charging demand management in the electrification transformation of taxi fleets.
表1 不同 参数下模型估计值和真实值的对比Tab. 1 Comparison of performance between estimated and real values for various |
模型参数 | 真实值 | θ=50% | θ=60% | θ=70% | θ=80% | θ=90% | θ=100% |
---|---|---|---|---|---|---|---|
充电区段数量/个 | 4 022 | 7 822 [94.48%] | 6 525 [62.23%] | 5 470 [36.00%] | 4 627 [15.04%] | 3 894* [3.18%] | 3 276 [18.55%] |
充电需求电量/(% SOC) | 202 942 | 205 761 [1.39%] | 209 045 [3.01%] | 209 028 [3.00%] | 210 026 [3.49%] | 209 008 [2.99%] | 205 177* [1.10%] |
平均每个充电区段需求电量/(% SOC/个) | 50.46 | 26.31 [47.87%] | 32.04 [36.51%] | 38.21 [24.27%] | 45.39 [10.04%] | 53.67* [6.37%] | 62.63 [24.12%] |
充电总时长/h | 34 085 | 33 986* [0.29%] | 33 818 [0.78%] | 33 026 [3.11%] | 32 238 [5.42%] | 31 138 [8.65%] | 29 734 [12.77%] |
充电总能量/(% SOC·h) | 2 002 338 | 959 193 [52.10%] | 1 164 961 [21.45%] | 1 350 381 [15.92%] | 1 562 989 [15.74%] | 1 767 116 [13.06%] | 1 912 669* [8.24%] |
注:[ ]中的数字表示各估计指标同真实值间的相对误差ε, *表示各指标表现最好的估计值。 |
[1] |
IEA. Global EV Outlook 2023[EB/OL]. ( April 2023) [2023-06-04]. https://www.iea.org/reports/global-ev-outlook-2023/executive-summary.
|
[2] |
|
[3] |
北京市人民政府. 关于印发《北京市“十四五”时期交通发展建设规划》的通知[EB/OL]. ( 2022-05-07) [2023-06-04].
[Beijing Municipal People's Government. Notice on Issuing the "Transportation Development and Construction Plan for the 14th Five Year Plan Period in Beijing"[EB/OL]. ( 2022-05-07) [2023-06-04].] https://www.beijing.gov.cn/zhengce/gfxwj/202205/t20220507_2704320.html
|
[4] |
|
[5] |
王震坡, 张瑾, 刘鹏, 等. 电动汽车充电站规划研究综述[J]. 中国公路学报, 2022, 35(12):230-252.
[
|
[6] |
|
[7] |
赵轩, 张元星, 李斌, 等. 国内外车网互动试点成效分析与发展建议[J]. 电力自动化设备, 2022, 42(10):280-292.
[
|
[8] |
|
[9] |
张毅, 朱攀. 电动出租车专用充电场站选址模型研究[J]. 地球信息科学学报, 2021, 23(5):802-811.
[
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
周椿奇, 向月, 童话, 等. 轨迹数据驱动的电动汽车充电需求及V2G可调控容量估计[J]. 电力系统自动化, 2022, 46(12):46-55.
[
|
[25] |
|
[26] |
金伶芝, 王硕, 何卉, 等. 中国纯电动乘用车实际行驶性能: 能耗、续驶里程和充电模式[R]. 国际清洁交通委员会. 2023. https://theicct.org/wp-content/uploads/2023/06/中国纯电动乘用车实际行驶性能_FINAL.pdf.
[
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
何凌晖, 余庆, 李玮峰, 等. 新冠肺炎疫情影响下的城际交通运输需求分析[J]. 城市交通, 2020, 18(3):51-61.
[
|
[32] |
|
[33] |
|
[34] |
北京经济技术开发区. 北京亦庄创新发布第66次网络发布:北京经开区成全市首个充电服务半径达标区域[EB/OL].( 2020-06-08) [2023-10-04].
[Beijing Economic-Technological Development Area. Beijing Yizhuang Innovation Release 66th Online Release: Beijing Economic and Technological Development Area Becomes the First Charging Service radius Standard Area in the City[EB/OL]. ( 2020-06-08) [2023-10-04].] https://kfqgw.beijing.gov.cn/zwgkkfq/yzttkfq/202103/t20210330_2332894.html.
|
[35] |
|
[36] |
|
/
〈 |
|
〉 |