月球高光谱轨道器数据处理关键技术发展现状及未来挑战
张 鹏(1981— ),男,北京人,博士,研究员,主要从事月球定量遥感、月球多尺度联合探测、月球资源勘察评估与开发利用等研究。E-mail: zhangpeng@csu.ac.cn |
Copy editor: 黄光玉 , 蒋树芳
收稿日期: 2024-08-23
修回日期: 2024-12-12
网络出版日期: 2025-03-25
Current Status and Future Challenges of Key Technologies for Processing Lunar Hyperspectral Orbit Data
Received date: 2024-08-23
Revised date: 2024-12-12
Online published: 2025-03-25
张鹏 , 刘琬玥 , 刘成保 , 薄正 , 牛冉 , 韩东旭 , 林茜 , 张子怡 , 马铭泽 . 月球高光谱轨道器数据处理关键技术发展现状及未来挑战[J]. 地球信息科学学报, 2025 , 27(4) : 787 -800 . DOI: 10.12082/dqxxkx.2025.240467
[Significance] The characteristics of the lunar surface, including its mineral compositions, geological formations, environmental factors, and temperature variations, are essential for advancing our understanding of the Moon. These features provide a wealth of scientific data for lunar research, such as resource distribution, environmental characteristics, and evolutionary history. Spectral imagers, which detect mineral compositions in a nondestructive way, play a crucial role in analyzing the mineral compositions of the lunar surface and have become key payloads in scientific exploration missions. With the increasing demand for high-precision lunar exploration data and advancements in spectral imaging technology, there is a growing trend toward acquiring lunar remote sensing data with higher spatial and spectral resolution across a broad spectral range. This trend is shaping the future of lunar orbit exploration, allowing for unprecedented detail in probing the Moon's surface. However, the higher resolution of spatial and spectral data also introduces significant challenges in data processing. [Progress] This paper begins by summarizing existing lunar spectral orbit data, including payload parameters and associated scientific findings. It then explores specific technical challenges in the data processing chain, such as pre-processing and the calculation of lunar surface parameters. Mapping surface compositions through spectral remote sensing is particularly complex due to the mixing of minerals within rocks, which can obscure clear spectral signatures. To address these challenges, various theoretical and empirical approaches have been developed. This paper proposes technical methods and potential solutions to overcome these obstacles.[Conclusions] In conclusion, detailed studies of lunar surface characteristics and the acquisition of high-resolution spectral data are vital for advancing lunar science. Lunar hyperspectral data are expected to support manned lunar exploration and scientific research by enabling the identification of various minerals on the Moon's surface and determining their abundance through hyperspectral observations. Advances in spectral imaging technology and the development of solutions for processing high-resolution data will significantly enhance lunar and planetary science capabilities. These efforts will pave the way for deeper insights into the Moon's geology and potential resource utilization.
表1 月球探测任务中主要光谱成像仪Tab. 1 Current major spectrometer payloads for lunar exploration |
时间/年 | 国家 | 卫星 | 光谱成像仪 | 光谱范围/μm | 光谱分辨率/nm | 波段数目/个 | 空间分辨率/m | 视场角/° |
---|---|---|---|---|---|---|---|---|
2007 | 日本 | 月亮女神号 | 多光谱成像仪(MI) | 0.41~1.55 | 7.62~29 | 9 | VIS: 20 NIR: 62 | 11 |
月亮女神号 | 连续光谱测量仪(SP) | 0.50~2.60 | 10~50 | 296 | 562 400 | 0.23 | ||
2007 | 中国 | 嫦娥一号 | 干涉成像光谱仪(IIM) | 0.48~0.96 | 15 | 32 | 200 | 7.3 |
2008 | 印度 | 月船一号 | 月球矿物绘图仪(M3) | 0.43~3.00 | 6~8 | 86 | 140 | 24 |
2019 | 印度 | 月船二号 | 红外成像光谱仪(IIRS) | 0.80~5.00 | 20~25 | 160 | 40 | 11.4 |
表3 月表矿物反演方法Tab. 3 Summary of mineral retrieval methods for lunar hyperspectral remote sensing |
[1] |
欧阳自远. 月球科学概论[M]. 北京: 中国宇航出版社, 2005.
[
|
[2] |
|
[3] |
童庆禧, 张兵, 郑兰芬. 高光谱遥感:原理、技术与应用[M]. 北京: 高等教育出版社, 2006.
[
|
[4] |
童庆禧, 张兵, 郑兰芬. 高光谱遥感的多学科应用[M]. 北京: 电子工业出版社, 2006.
[
|
[5] |
桂裕华, 李津宁, 王梅竹, 等. 月球及火星探测任务中光谱技术研究与应用[J]. 红外与毫米波学报, 2022, 41(1):74-84.
[
|
[6] |
何志平, 桂裕华, 李津宁, 等. 面向月球环绕探测的光谱成像:研究现状与技术挑战[J]. 光学学报, 2022, 42(17):402-412.
[
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
赵葆常, 杨建峰, 常凌颖, 等. 嫦娥一号卫星成像光谱仪光学系统设计与在轨评估[J]. 光子学报, 2009, 38(3):479-483.
[
|
[28] |
|
[29] |
吴昀昭, 徐夕生, 谢志东, 等. 嫦娥一号IIM数据绝对定标与初步应用[J]. 中国科学G辑, 2009, 39(10):1387-1392.
[
|
[30] |
|
[31] |
张江. 嫦娥一号干涉成像光谱仪数据处理和Aristarchus地区着陆点选择[D]. 济南: 山东大学, 2011.
[
|
[32] |
吴昀昭, 唐泽圣. 嫦娥一号IIM数据应用处理流程分析[J]. 国土资源遥感, 2009, 21(4):25-30.
[
|
[33] |
胡森, 林杨挺. 嫦娥一号IIM数据定标的改进方法[J]. 中国科学G辑, 2011, 41(7):879-88.
[
|
[34] |
吴昀昭, 郑永春, 邹永廖, 等. 嫦娥一号IIM数据处理分析与应用之一:全月表矿物吸收中心分布图[J]. 中国科学G辑, 2010, 40(11):1343-1362.
[
|
[35] |
凌宗成, 刘建忠, 张江, 等. 基于“嫦娥一号” 干涉成像光谱仪数据的月球岩石类型填图:以月球雨海—冷海地区(LQ-4)为例[J]. 地学前缘, 2014, 21(6):107-120.
[
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
许学森, 刘建军, 刘斌, 等. 月表光度模型研究进展[J]. 遥感技术与应用, 2016, 31(4):634-44.
[
|
[62] |
|
[63] |
|
[64] |
陈超, 秦其明, 张宁, 等. CE-1干涉成像光谱仪数据光度校正与反射率计算[J]. 光谱学与光谱分析, 2011, 31(7):1985-1990.
[
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
马明. 基于LRO卫星Diviner 热红外数据的月表发射率反演及其尺度效应研究[D]. 长春: 吉林大学, 2016.
[
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
/
〈 |
|
〉 |