专栏:“从地球到深空:遥感地理信息技术拓展与创新”

月球形貌遥感测绘发展现状与未来展望

  • 刘成保 , 1 ,
  • 薄正 , 1, * ,
  • 张鹏 1 ,
  • 周米玉 2 ,
  • 刘琬玥 1 ,
  • 黄荣 2 ,
  • 牛冉 1 ,
  • 叶真 2 ,
  • 杨瀚哲 1 ,
  • 刘世杰 2 ,
  • 韩东旭 1 ,
  • 林茜 1
展开
  • 1.中国科学院空间应用工程与技术中心,北京 100094
  • 2.同济大学测绘与地理信息学院,上海 200092
* 薄 正(1994— ),男,山东日照人,博士,助理研究员,主要从事行星摄影测量与遥感方面的研究。 E-mail:

刘成保(1985— ),男,山东淄博人,博士,高级工程师,主要从事卫星遥感与月球形貌重建、地月空间光学数字孪生等方面的研究。E-mail:

Copy editor: 黄光玉 , 蒋树芳

收稿日期: 2024-08-23

  修回日期: 2024-12-04

  网络出版日期: 2025-03-25

Current Status and Future Prospects of Lunar Topographic Remote Sensing and Mapping

  • LIU Chengbao , 1 ,
  • BO Zheng , 1, * ,
  • ZHANG Peng 1 ,
  • ZHOU Miyu 2 ,
  • LIU Wanyue 1 ,
  • HUANG Rong 2 ,
  • NIU Ran 1 ,
  • YE Zhen 2 ,
  • YANG Hanzhe 1 ,
  • LIU Shijie 2 ,
  • HAN Dongxu 1 ,
  • LIN Qian 1
Expand
  • 1. Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences,Beijing 100094, China
  • 2. College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China
* BO Zheng, E-Mail:

Received date: 2024-08-23

  Revised date: 2024-12-04

  Online published: 2025-03-25

摘要

【意义】月球形貌遥感测绘是保障月球探测任务安全实施和推动月球科学研究的关键手段,对于理解月球地质演化和地月系统的形成具有重要意义。【进展】近年来,随着国内外对月球探测的兴趣与投入不断增加,遥感技术的创新推动了月球形貌测绘精度和覆盖范围的显著提升,各类遥感任务获取了大量多源、多模态和多尺度的数据,为技术突破奠定了基础。然而,数据量和复杂性的急剧增加,带来了形貌测绘处理的严峻挑战。本文全面综述了月球形貌遥感测绘的发展现状,重点梳理第二次探月热潮以来月球遥感探测任务的实施与数据获取情况,系统总结了激光高度计测高、光学摄影测量以及合成孔径雷达地形测量等关键测绘技术的最新研究进展与应用。【展望】对月球形貌遥感测绘领域的发展趋势与未来可能面临的挑战进行了深入探讨和展望,针对传感器能力提升、月球绝对参考框架优化、多源数据融合精细建模、海量遥感数据智能高效处理、以及推动科学应用水平发展的前景等方面给出了建议。

本文引用格式

刘成保 , 薄正 , 张鹏 , 周米玉 , 刘琬玥 , 黄荣 , 牛冉 , 叶真 , 杨瀚哲 , 刘世杰 , 韩东旭 , 林茜 . 月球形貌遥感测绘发展现状与未来展望[J]. 地球信息科学学报, 2025 , 27(4) : 801 -819 . DOI: 10.12082/dqxxkx.2025.240466

Abstract

[Significance] Lunar remote sensing is a critical method to ensure the safety and success of lunar exploration missions while advancing lunar scientific research. It plays a significant role in understanding the Moon's geological evolution and the formation of the Earth-Moon system. Accurate lunar topographic maps are essential for mission planning, including landing site selection, navigation, and resource identification. These maps also provide valuable data for studying planetary processes and the history of the solar system. [Progress] In recent years, with growing global interest and investment in lunar exploration, remarkable progress has been made in remote sensing technology. These advancements have significantly improved the precision, resolution, and coverage of lunar topographic mapping. Various lunar remote sensing missions, such as China's Chang'e program, NASA's Lunar Reconnaissance Orbiter, and missions by other space agencies, have acquired substantial amounts of multi-source, multi-modal, and multi-scale data. This wealth of data has laid a solid foundation for technological breakthroughs. For instance, high-resolution laser altimetry, optical photogrammetry, and synthetic aperture radar have provided detailed datasets, enabling refined mapping of the Moon's surface. However, the dramatic increase in data volume, complexity, and heterogeneity presents challenges for effective processing, integration, and application in topographic mapping. This paper provides a comprehensive overview of the current state of lunar topographic remote sensing and mapping, focusing on the implementation and data acquisition capabilities of major lunar remote sensing missions during the second wave of lunar exploration. It systematically summarizes the latest research progress in key surveying and mapping technologies, including laser altimetry, which enables precise elevation measurements; optical photogrammetry, which reconstructs surface features using high-resolution imagery; and synthetic aperture radar, which provides unique insights into topographic and subsurface structures. [Prospect] In addition to reviewing recent advancements, the paper discusses future trends and challenges in the field. Key recommendations include enhancing sensor functionality and performance metrics to improve data quality, optimizing the lunar absolute reference framework for consistency and accuracy, leveraging multi-source data fusion for fine-scale modeling, expanding scientific applications of lunar topography, and developing intelligent and efficient methods to process massive amounts of remote sensing data. These efforts will not only support upcoming lunar exploration missions, such as China's manned lunar landing program scheduled for 2030, but also contribute to a deeper understanding of the Moon and its relationship with Earth.

[1]
童小华, 刘世杰, 谢欢, 等. 从地球测绘到地外天体测绘[J]. 测绘学报, 2022, 51(4):488-500.

DOI

[Tong X H, Liu S J, Xie H, et al. From Earth mapping to extraterrestrial planet mapping[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4):488-500.] DOI:10.11947/j.AGCS.2022.20220117

[2]
中国载人航天. 2024年中国载人航天工程将统筹推进空间站应用与发展和载人月球探测两大任务[EB/OL]. (2024-02-19) [2024-11-21]. https://www.cmse.gov.cn/xwzx/202402/t20240229_55117.html.

[China Manned Space. 2024:China's Manned Space Program Will Coordinate Space Station Applications and Lunar Exploration)[EB/OL]. (2024-02-19) [2024-11-21]. https://www.cmse.gov.cn/xwzx/202402/t20240229_55117.html.]

[3]
Kopal Z, Carder R W. Mapping of the moon[M]. Dordrecht: Springer, 1974: 213-228. DOI:10.1007/978-94-010-2 133-3_10

[4]
Sorensen T C, Spudis P D. The clementine mission—A 10-year perspective[J]. Journal of Earth System Science, 2005, 114(6):645-668. DOI:10.1007/BF02715950

[5]
Smith D E, Zuber M T, Neumann G A, et al. Topography of the moon from the clementine lidar[J]. Journal of Geophysical Research: Planets, 1997, 102(E1):1591-1611. DOI:10.1029/96je02940

[6]
Araki H, Tazawa S, Noda H, et al. Observation of the lunar topography by the laser altimeter LALT on board Japanese lunar explorer SELENE[J]. Advances in Space Research, 2008, 42(2):317-322. DOI:10.1016/j.asr.2007.05.042

[7]
Araki H, Tazawa S, Noda H, et al. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry[J]. Science, 2009, 323(5916):897-900. DOI:10.1126/science.1164146

PMID

[8]
李春来, 任鑫, 刘建军, 等. 嫦娥一号激光测距数据及全月球DEM模型[J]. 中国科学:地球科学, 2010(3):281-293.

[Li C, Ren X, Liu J, et al. Laser altimetry data of Chang'E-1 and the global lunar DEM model[J]. Sci China Earth Sci, 2010(3):281-293.] DOI:10.1007/s11430-010-0054-7

[9]
Kamalakar J, Prasad A, Bhaskar K V S, et al. Laser ranging experiment aboard Chandrayaan-I: Instrumentation and preliminary results[C]// Proceedings of the 40th Annual Lunar and Planetary Science Conference. The Woodlands, Texas, USA, 2009:1487.

[10]
Smith D E, Zuber M T, Jackson G B, et al. The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission[J]. Space Science Reviews, 2010, 150(1):209-241. DOI:10.1007/s11214-009-9512-y

[11]
Barker M K, Mazarico E, Neumann G A, et al. Improved LOLA elevation maps for south pole landing sites: Error estimates and their impact on illumination conditions[J]. Planetary and Space Science, 2021,203:105119. DOI:10.1016/j.pss.2020.105119

[12]
Barker M K, Mazarico E, Smith D E, et al. New high resolution polar topographic rroducts from the Lunar Orbiter Laser Altimeter (LOLA)[C]// Proceedings of the 2021 Annual Meeting of the Lunar Exploration Analysis Group. 2021:5033.

[13]
Barker M K, Mazarico E, Neumann G A, et al. A new view of the Lunar South Pole from the Lunar Orbiter Laser Altimeter (LOLA)[J]. The Planetary Science Journal, 2023, 4(9):183. DOI:10.3847/psj/acf3e1

[14]
Kordas J F, Lewis I T, Priest R E, et al. UV/Visible camera for the clementine mission[C]// Proceedings of the Space Telescopes and Instruments. Orlando, FL, USA, 1995:175-186. DOI:10.1117/12.210943

[15]
Lee E, Gaddis L, Weller L, et al. A new clementine basemap of the moon[C]// Proceedings of the 40th Annual Lunar and Planetary Science Conference. The Woodlands, Texas, USA, 2009:2445.

[16]
Cook A C, Watters T R, Robinson M S, et al. Lunar polar topography derived from Clementine stereoimages[J]. Journal of Geophysical Research: Planets, 2000, 105(E5):12023-12033. DOI:10.1029/1999JE001083

[17]
Edwards K, Colvin T, Becker T, et al. Global digital mapping of the Moon[C]// Proceedings of the 27th Lunar and Planetary Science Conference. Houston, Texas, USA, 1996:335-336.

[18]
Foing B H, Racca G D, Marini A, et al. SMART-1 mission to the Moon: Status, first results and goals[J]. Advances in Space Research, 2006, 37(1):6-13. DOI:10.1016/j.asr.2005.12.016

[19]
Grieger B, Foing B H, Koschny D, et al. Coverage and pointing accuracy of SMART-1/AMIE images[C]// Proceedings of the 39th Lunar and Planetary Science Conference. Houston, Texas, USA, 2008: 2221.

[20]
Haruyama J, Matsunaga T, Ohtake M, et al. Global lunar-surface mapping experiment using the Lunar Imager/Spectrometer on SELENE[J]. Earth, Planets and Space, 2008, 60(4):243-255. DOI: 10.1186/BF03352788.

[21]
Haruyama J, Hara S, Hioki K, et al. Lunar global digital terrain model dataset produced from SELENE (Kaguya) terrain camera stereo observations[C]// Proceedings of the 43rd Annual Lunar and Planetary Science Conference. The Woodlands, Texas, USA, 2012:1200.

[22]
李春来, 刘建军, 任鑫, 等. 嫦娥一号图像数据处理与全月球影像制图[J]. 中国科学D辑, 2010, 40(3):294-306.

[Li C L, Liu J J, Ren X, et al. The global image of the moon by the Chang’E-1: Data processing and lunar cartography[J]. Scientia Sinica (Terrae), 2010, 40(3):294-306.] DOI: 10.1007/s11430-010-0053-8.

[23]
Kumar A, Chowdhury A R, Murali K, et al. The Terrain Mapping Camera on Chandrayaan-1 and initial results[C]// Proceedings of the 40th Annual Lunar and Planetary Science Conference. The Woodlands, Texas, USA, 2009:1584.

[24]
Robinson M S, Brylow S M, Tschimmel M, et al. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview[J]. Space Science Reviews, 2010, 150(1):81-124. DOI:10.1007/s11214-010-9634-2

[25]
Di K C, Jia M N, Xin X, et al. High-resolution large-area digital orthophoto map generation using LROC NAC images[J]. Photogrammetric Engineering & Remote Sensing, 2019, 85(7):481-491. DOI:10.14358/pers.85.7.481

[26]
Wagner R V, Boyd A K, Henriksen M R, et al. LROC NAC South Pole Controlled Mosaic[C]// Proceedings of the 53rd Lunar and Planetary Science Conference. The Woodlands, Texas, USA, 2022:2573.

[27]
Archinal B A, Weller L A, Richie J O, et al. Controlled High-Resolution LROC NAC Polar Mosaics[C]// Proceedings of the 54th Lunar and Planetary Science Conference. The Woodlands, Texas, USA, 2023:2333.

[28]
Chen C, Ye Z, Xu Y S, et al. Large-scale block bundle adjustment of LROC NAC images for lunar south pole mapping based on topographic constraint[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17:2731-2746. DOI:10.1109/JSTARS.2023.3346199

[29]
DLR. Shackleton Crater Rim Potential Landing Site for ESA Lunar Lander DTM[EB/OL].

[ 2024-11-21. https://wms.lroc.asu.edu/lroc/view_rdr/NAC_DTM_ESALL_SR12.

[30]
Haase I, Oberst J, Scholten F, et al. Mapping the Apollo 17 landing site area based on Lunar Reconnaissance Orbiter Camera images and Apollo surface photography[J]. Journal of Geophysical Research: Planets, 2012, 117(E12): E00H20. DOI:10.1029/2011je003908

[31]
Speyerer E, Robinson M, Denevi B, et al. Lunar Reconnaissance Orbiter Camera global morphological map of the Moon[C]// Proceedings of the 42nd annual lunar and planetary science conference. The Woodlands, Texas, USA, 2011:2387.

[32]
Scholten F, Oberst J, Matz K D, et al. GLD100: The near-global lunar 100 m raster DTM from LROC WAC stereo image data[J]. Journal of Geophysical Research: Planets, 2012, 117(E12):E00H17. DOI:10.1029/2011JE003926

[33]
赵葆常, 李春来, 黄江川, 等. 嫦娥二号月球卫星CCD立体相机在轨图像分析[J]. 航天器工程, 2012, 21(5):1-7.

[Zhao B C, Li C L, Huang J C, et al. Analysis on In-orbit CCD Stereo Camera Images of Chang'e-2 Lunar Satellite[J]. Spacecraft Engineering, 2012, 21(5):1-7.] DOI:10.3969/j.issn.1673-8748.2012.05.00

[34]
李春来, 刘建军, 任鑫, 等. 基于嫦娥二号立体影像的全月高精度地形重建[J]. 武汉大学学报(信息科学版), 2018, 43(4):485-495.

[Li C L, Liu J J, Ren X, et al. Lunar global high-precision terrain reconstruction based on Chang'e-2 stereo images[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4):485-495.] DOI:10.13203/j.whugis20170400

[35]
Chowdhury A R, Saxena M, Kumar A, et al. Orbiter high resolution camera onboard Chandrayaan-2 orbiter[J]. Current Science, 2020, 118(4):560. DOI:10.18520/cs/v118/i4/560-565

[36]
Youk Y, Ryu D, Yoon J. High-resolution terrain imager development and performance evaluation for lunar exploration[J]. Applied Optics, 2024, 63(1):221. DOI:10.1364/AO.504883

[37]
Robinson M S, Brylow S M, Caplinger M A, et al. ShadowCam instrument and investigation overview[J]. Journal of Astronomy and Space Sciences, 2023, 40(4):149-171. DOI:10.5140/jass.2023.40.4.149

[38]
Kirk R, Cook D, Howington-Kraus E, et al. Radargrammetry with Chandrayaan-1 and LRO Mini-RF images of the Moon[C]// Proceedings of the Joint symposium of ISPRS Technical Commission IV & AutoCarto in Conjunction with ASPRS/CaGIS 2010 Fall Specialty Conference. Orlando, FL, USA, 2010.

[39]
Nozette S, Spudis P, Bussey B, et al. The Lunar Reconnaissance Orbiter miniature radio frequency (Mini-RF) technology demonstration[J]. Space Science Reviews, 2010, 150(1):285-302. DOI: 10.1007/s11214-009-9607-5.

[40]
Kirk R, Howington-Kraus E, Becker T, et al. Progress in radargrammetric analysis of Mini-RF lunar images[C]// Proceedings of the 43rd Annual Lunar and Planetary Science Conference. The Woodlands, Texas, USA, 2012: 2772.

[41]
Archinal B A, Rosiek M R, Kirk R L, et al. The unified lunar control network 2005[M]. Sunrise Valley Drive Reston, VA: US Geological Survey, 2006.

[42]
Barker M K, Mazarico E, Neumann G A, et al. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera[J]. Icarus, 2016, 273:346-355. DOI:10.1016/j.icarus.2015.07.039

[43]
Bhaskar K, Kamalakar J, Laxmiprasad A, et al. Lunar Topography by Laser Ranging Instrument Onboard CHANDRAYAAN-1 [M]// Advances in Geosciences: Volume 25:Planetary Science (PS). World Scientific. 2011: 73-85. DOI:10.1142/9789814355377_0006

[44]
Sivakumar V, Kumar B, Srivastava S K, et al. DEM generation for lunar surface using chandrayaan-1 TMC triplet data[J]. Journal of the Indian Society of Remote Sensing, 2012, 40(4):551-564. DOI:10.1007/s12524-011-0172-5

[45]
Amitabh K S, Prashar A K, Az A S. Terrain Characterisation of potential landing sites for chandrayaan-3 lander using orbiter high resolution camera (OHRC) images[C]// Proceedings of the 54th Lunar and Planetary Science Conference. The Woodlands, Texas, USA, 2023:1037.

[46]
Smith D E, Zuber M T, Neumann G A, et al. Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit[J]. Icarus, 2017, 283:70-91. DOI: 10.1016/j.icarus.2016.06.006

[47]
Mazarico E, Neumann G A, Barker M K, et al. Orbit determination of the Lunar Reconnaissance Orbiter: Status after seven years[J]. Planetary and Space Science, 2018, 162:2-19. DOI:10.1016/j.pss.2017.10.004

PMID

[48]
Speyerer E J, Wagner R V, Robinson M S, et al. Pre-flight and on-orbit geometric calibration of the Lunar Reconnaissance Orbiter Camera[J]. Space Science Reviews, 2016, 200(1):357-392. DOI:10.1007/s11214-014-0073-3

[49]
Henriksen M R, Manheim M R, Burns K N, et al. Extracting accurate and precise topography from LROC narrow angle camera stereo observations[J]. Icarus, 2017, 283:122-137. DOI:10.1016/j.icarus.2016.05.012

[50]
Wu B, Liu W C. Calibration of boresight offset of LROC NAC imagery for precision lunar topographic mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128:372-387. DOI:10.1016/j.isprsjprs.2017.04.012

[51]
欧阳自远. 嫦娥一号卫星的初步科学成果与嫦娥二号卫星的使命[J]. 航天器工程, 2010, 19(5):1-6.

[Ouyang Z Y. Science results of Chang'e-1 lunar orbiter and mission goals of Chang'e-2[J]. Spacecraft Engineering, 2010, 19(5):1-6.] DOI:10.3969/j.issn.1673-8748.2010.05.001

[52]
Song Y J, Bang J, Bae J, et al. Lunar orbit acquisition of the Korea Pathfinder Lunar orbiter: Design reference vs actual flight results[J]. Acta Astronautica, 2023, 213:336-343. DOI:10.1016/j.actaastro.2023.09.021

[53]
Wang C, Jia Y Z, Xue C B, et al. Scientific objectives and payload configuration of the Chang'E-7 mission[J]. National Science Review, 2023, 11(2):nwad329. DOI:10.1093/nsr/nwad329

[54]
Djachkova M V, Mitrofanov I G, Sanin A B, et al. Selecting a landing site for the Luna 27 spacecraft[J]. Solar System Research, 2022, 56(3):145-154. DOI:10.1134/S0038094622030029

[55]
Kim J, Lin S Y, Xiao H F. Remote sensing and data analyses on planetary topography[J]. Remote Sensing, 2023, 15(12):2954. DOI:10.3390/rs15122954

[56]
Dickey J O, Bender P L, Faller J E, et al. Lunar laser ranging: A continuing legacy of the Apollo program[J]. Science, 1994, 265(5171):482-490. DOI:10.1126/science.265.5171.482

PMID

[57]
单杰, 田祥希, 李爽, 等. 星载激光测高技术进展[J]. 测绘学报, 2022, 51(6):964-982.

DOI

[Shan J, Tian X X, Li S, et al. Advances of spaceborne laser altimetry technology[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):964-982.] DOI:10.11947/j.AGCS.2022.20220174

[58]
于真真, 侯霞, 周翠芸. 星载激光测高技术发展现状[J]. 激光与光电子学进展, 2013, 50(2):020006.

[Yu Z Z, Hou X, Zhou C Y. Progress and current state of space-borne laser altimetry[J]. Laser & Optoelectronics Progress, 2013, 50(2):020006.] DOI:10.3788/LOP50.020006

[59]
汤国安. 我国数字高程模型与数字地形分析研究进展[J]. 地理学报, 2014, 69(9):1305-1325.

DOI

[Tang G A. Progress of DEM and digital terrain analysis in China[J]. Acta Geographica Sinica, 2014, 69(9):1305-1325.] DOI:10.11821/dlxb201409006

[60]
邸凯昌, 刘斌, 刘召芹, 等. 月球遥感制图回顾与展望[J]. 遥感学报, 2016, 20(5):1230-1242.

[Di K C, Liu B, Liu Z Q, et al. Review and prospect of lunar mapping using remote sensing data[J]. National Remote Sensing Bulletin, 2016, 20(5):1230-1242.] DOI:10.11834/jrs20166158

[61]
Goossens S, Matsumoto K, Rowlands D D, et al. Orbit determination of the SELENE satellites using multi-satellite data types and evaluation of SELENE gravity field models[J]. Journal of Geodesy, 2011, 85(8):487-504. DOI: 10.1007/s00190-011-0446-2

[62]
Goossens S, Mazarico E, Ishihara Y, et al. Improving the geometry of Kaguya extended mission data through refined orbit determination using laser altimetry[J]. Icarus, 2020,336:113454. DOI:10.1016/j.icarus.2019.113454

[63]
Hao W F, Zhu C, Li F, et al. Illumination and communication conditions at the Mons Rümker region based on the improved Lunar Orbiter Laser Altimeter data[J]. Planetary and Space Science, 2019, 168:73-82. DOI:10.1016/j.pss.2019.01.010

[64]
Li F, Zhu C, Hao W F, et al. An improved digital elevation model of the lunar Mons Rümker region based on multisource altimeter data[J]. Remote Sensing, 2018, 10(9):1442. DOI:10.3390/rs10091442

[65]
Hu W M, Di K C, Liu Z Q, et al. A new lunar global DEM derived from Chang'E-1 Laser Altimeter data based on crossover adjustment with local topographic constraint[J]. Planetary and Space Science, 2013, 87:173-182. DOI:10.1016/j.pss.2013.08.004

[66]
Huang Y, Chang S Q, Qin S H, et al. A new lunar DEM based on the calibrated Chang’E-1 laser altimeter data[J]. Advances in Astronomy, 2018,2018:5363797. DOI: 10.1155/2018/5363797

[67]
Zheng Y J, Hao W F, Ye M, et al. Construction of a high-quality digital elevation model of the Amundsen crater and landing area selection for future lunar missions[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17:1575-1583. DOI: 10.1109/JSTARS.2023.3339967

[68]
Xie H, Liu X S, Xu Y S, et al. Using laser altimetry to finely map the permanently shadowed regions of the lunar south pole using an iterative self-constrained adjustment strategy[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15:9796-9808. DOI:10.1109/JSTARS.2022.3204765

[69]
Zheng Y J, Hao W F, Ye M, et al. Correcting flawed orbits with significant along-track offset in LOLA data to remove apparent noise in DEM[J]. Journal of Geodesy, 2024, 98(3):20. DOI:10.1007/s00190-024-01827-4

[70]
邸凯昌, 刘斌, 辛鑫, 等. 月球轨道器影像摄影测量制图进展及应用[J]. 测绘学报, 2019, 48(12):1562-1574.

DOI

[Di K, Liu B, Xin X, et al. Advances and applications of lunar photogrammetric mapping using orbital images[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1562-1574.] DOI:10.11947/j.AGCS.2019.20190462

[71]
Acton C, Bachman N, Semenov B, et al. A look towards the future in the handling of space science mission geometry[J]. Planetary and Space Science, 2018, 150:9-12. DOI:10.1016/j.pss.2017.02.013

[72]
Annex A, Pearson B, Seignovert B, et al. SpiceyPy: A pythonic wrapper for the SPICE toolkit[J]. Journal of Open Source Software, 2020, 5(46):2050. DOI:10.21105/joss.02050

[73]
Di K C, Ma R J, Xing L R. Rational functions and potential for rigorous sensor model recovery[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(1):33-41. DOI:10.14358/pers.69.1.33

[74]
Liu Y, Di K. Evaluation of rational function model for geometric modeling of CHANG'E-1 CCD images[J]. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2011,3825:121-125. DOI:10.5194/isprsarchives-XXXVIII-4-W25-121-2011

[75]
Liu B, Xu B, Di K, et al. A solution to low rfm fitting precision of planetary orbiter images caused by exposure time changing[J]. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016,XLI-B4:441-448. DOI:10.5194/isprsarchives-xli-b4-441-2016

[76]
Hu H, Wu B. Block adjustment and coupled epipolar rectification of LROC NAC images for precision lunar topographic mapping[J]. Planetary and Space Science, 2018, 160:26-38. DOI:10.1016/j.pss.2018.03.002

[77]
Di K C, Hu W M, Liu Y L, et al. Co-registration of Chang'E-1 stereo images and laser altimeter data with crossover adjustment and image sensor model refinement[J]. Advances in Space Research, 2012, 50(12):1615-1628. DOI:10.1016/j.asr.2012.06.037

[78]
Wu B, Hu H, Guo J. Integration of Chang’E-2 imagery and LRO laser altimeter data with a combined block adjustment for precision lunar topographic modeling[J]. Earth and Planetary Science Letters, 2014, 391:1-15. DOI: 10.1016/j.epsl.2014.01.023

[79]
Di K C, Liu Y L, Liu B, et al. A self-calibration bundle adjustment method for photogrammetric processing of Chang' E-2 stereo lunar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5432-5442. DOI:10.1109/TGRS.2013.2288932

[80]
Tran T, Rosiek M, Beyer R, et al. Generating digital terrain models using LROC NAC images[C]// Proceedings of the At ASPRS/CaGIS 2010 Fall Specialty Conference. Orlando, FL, USA, 2010.

[81]
Jiang X Y, Ma J Y, Xiao G B, et al. A review of multimodal image matching: Methods and applications[J]. Information Fusion, 2021, 73:22-71. DOI:10.1016/j.inffus.2021.02.012

[82]
Ye Y X, Shan J, Bruzzone L, et al. Robust registration of multimodal remote sensing images based on structural similarity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2941-2958. DOI:10.1109/TGRS.2017.2656380

[83]
Li J Y, Hu Q W, Ai M Y. Rift: Multi-modal image matching based on radiation-variation insensitive feature transform[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2019, 29:3296-3310. DOI:10.1109/TIP.2019.2959244

[84]
Wan G Y, Ye Z, Xu Y S, et al. Multi-Modal remote sensing image matching based on weighted structure saliency feature[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024,62:4700816. DOI:10.1109/TGRS.2023.3347259

[85]
Zhan L, Ma J, Sang X J, et al. Matching method of lunar remote sensing image based on Laplacian[J]. IOP Conference Series: Materials Science and Engineering, 2020, 768(6):062083. DOI:10.1088/1757-899x/768/6/062083

[86]
Zhai Y, Liu S, Guo X, et al. Lunar image matching based on FAST features with adaptive threshold[C]// Proceedings of the Communications, Signal Processing, and Systems: Proceedings of the 2018 CSPS Volume II: Signal Processing 7th. Springer, 2020:11-19.

[87]
Wu B, Zeng H, Hu H. Illumination invariant feature point matching for high-resolution planetary remote sensing images[J]. Planetary and Space Science, 2018, 152:45-54. DOI:10.1016/j.pss.2018.01.007

[88]
Sidiropoulos P, Muller J P. A systematic solution to multi-instrument coregistration of high-resolution planetary images to an orthorectified baseline[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1):78-92. DOI:10.1109/TGRS.2017.2734693

[89]
Zhou H Y, Yu Y Z. Planetary image live stacking via phase correlation[C]// Proceedings of the 2016 9th International Symposium on Computational Intelligence and Design (ISCID).Hangzhou, China: IEEE, 2016:17-21. DOI:10.1109/ISCID.2016.2013

[90]
Huang R, Wan G Y, Zhou Y Y, et al. Fast double-channel aggregated feature transform for matching planetary remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17:9282-9293. DOI:10.1109/JSTARS.2024.3390432

[91]
Zhang Y R, Yang X, Qiao H, et al. Introducing locally affine-invariance constraints into lunar surface image correspondence[J]. Neurocomputing, 2016, 186:258-270. DOI: 10.1016/j.neucom.2015.12.082

[92]
Liu D Y, Ye Z, Xu Y S, et al. A mismatch removal method based on global constraint and local geometry preservation for lunar orbiter images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17:10221-10236. DOI:10.1109/JSTARS.2024.3400394

[93]
Wu B, Guo J, Zhang Y S, et al. Integration of Chang'E-1 imagery and laser altimeter data for precision lunar topographic modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12):4889-4903. DOI:10.1109/TGRS.2011.2153206

[94]
Xin X, Liu B, Di K C, et al. High-precision co-registration of orbiter imagery and digital elevation model constrained by both geometric and photometric information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144:28-37. DOI:10.1016/j.isprsjprs.2018.06.016

[95]
Becker K J, Robinson M S, Becker T L, et al. First global digital elevation model of Mercury[C]// Proceedings of the 47th Annual Lunar and Planetary Science Conference. The Woodlands, Texas, USA, 2016:2959.

[96]
Hargitai H, Willner K, Buchroithner M. Methods in planetary topographic mapping: A review[M]// Planetary Cartography and GIS. Cham: Springer, 2019: DOI:147-17 4.10.1007/978-3-319-62849-3_6

[97]
沙洪俊, 袁修孝. 双目影像密集匹配方法的回顾与展望[J]. 武汉大学学报(信息科学版), 2023, 48(11):1813-1833.

[Sha H J, Yuan X X. State-of-the-art binocular image dense matching method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11):1813-1833.] DOI:10.13203/j.whugis20230037

[98]
尤琼华, 叶真, 童小华, 等. 基于可信度引导立体匹配的月球南极摄影测量地形重建方法[J]. 深空探测学报(中英文), 2023, 10(6):586-597.

[You Q H, Ye Z, Tong X H, et al. Terrain reconstruction for lunar south pole region based on confidence-guided stereo matching[J]. Journal of Deep Space Exploration, 2023, 10(6):586-597.] DOI: 10.15982/j.issn.2096-9287.2023.20230120

[99]
彭嫚, 邸凯昌, 刘召芹. 基于自适应马尔科夫随机场的深空探测影像密集匹配[J]. 遥感学报, 2014, 18(1):77-89.

[Peng M, Di K C, Liu Z Q. Adaptive Markov random field model for dense matching of deep space stereo images[J]. National Remote Sensing Bulletin, 2014, 18(1):77-89.] DOI:10.11834/jrs.20133089

[100]
Hirschmuller H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2):328-341. DOI:10.1109/TPAMI.2007.1166

PMID

[101]
Beyer R A, Alexandrov O, McMichael S. The Ames stereo pipeline: NASA's open source software for deriving and processing terrain data[J]. Earth and Space Science, 2018, 5(9):537-548. DOI:10.1029/2018EA000409

[102]
Hu H, Wu B. Planetary3D: A photogrammetric tool for 3D topographic mapping of planetary bodies[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, IV-2/W5:519-526. DOI:10.5194/isprs-annals-iv-2-w5-519-2019

[103]
Guo Y Q, Gu M J, Xu Z D. Research on the improvement of semi-global matching algorithm for binocular vision based on lunar surface environment[J]. Sensors, 2023, 23(15):6901. DOI:10.3390/s23156901

[104]
Ye L, Peng M, Di K, et al. Lunar terrain reconstruction from multi-view lroc nac images based on semi-global matching in object space[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020,43B3:1177-1183. DOI: 10.5194/isprs-archives-XLIII-B3-2020-1177-2020

[105]
Kirk R L, Barrett J M, Soderblom L A. Photoclinometry made simple…?[C]// Proceedings of the ISPRS Working Group IV/9 Workshop Advances in Planetary Mapping 2003. Houston, Texas, USA, 2003.

[106]
Taguchi M, Funabashi G, Watanabe S, et al. Lunar albedo at hydrogen Lyman α by the NOZOMI/UVS[J]. Earth, Planets and Space, 2000, 52(9):645-647. DOI:10.1186/BF03351673

[107]
Grumpe A, Belkhir F, Wöhler C. Construction of lunar DEMs based on reflectance modelling[J]. Advances in Space Research, 2014, 53(12):1735-1767. DOI:10.1016/j.asr.2013.09.036

[108]
Wu B, Liu W C, Grumpe A, et al. Construction of pixel-level resolution DEMs from monocular images by shape and albedo from shading constrained with low-resolution DEM[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 140:3-19. DOI:10.1016/j.isprsjprs.2017.03.007

[109]
Woodham R J. Photometric method for determining surface orientation from multiple images[J]. Optical Engineering, 1980, 19(1):139-144. DOI:10.1117/12.7972479

[110]
Alexandrov O, Beyer R A. Multiview shape-from-shading for planetary images[J]. Earth and Space Science, 2018, 5(10):652-666. DOI:10.1029/2018EA000390

[111]
Liu W C, Wu B. An integrated photogrammetric and photoclinometric approach for illumination-invariant pixel-resolution 3D mapping of the lunar surface[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159:153-168. DOI:10.1016/j.isprsjprs.2019.11.017

[112]
Spudis P, Nozette S, Bussey B, et al. Mini-SAR: An imaging radar experiment for the Chandrayaan-1 mission to the Moon[J]. Current Science, 2009, 96(4):533-539.

[113]
Kirk R, Becker T, Shinaman J, et al. Radargrammetric Control Network and Controlled Mini-RF Mosaics of the Moon's North Pole…at Last![C]// Proceedings of the 44th Lunar and Planetary Science Conference. The Woodlands, Texas, USA, 2013:2920.

[114]
Wu Y L, Zhang H, Wang J L, et al. Stereo-radargrammetry assisted InSAR phase unwrapping method for DEM generation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022,60:5233718. DOI:10.1109/TGRS.2022.3199103

[115]
Kirk R, Howington-Kraus E, Becker T, et al. Next steps in radargrammetry of the Moon: Targeted stereo observations and controlled mosaic production[C]// Proceedings of the 42nd Annual Lunar and Planetary Science Conference. The Woodlands, Texas, USA, 2011:2392.

[116]
Kirk R, Howington-Kraus E, Becker T, et al. Radargrammetric analysis of Mini-RF lunar images[C]// Proceedings of the EPSC-DPS Joint Meeting 2011. Madrid, Spain, 2011:1473.

[117]
Tong X H, Huang Q, Liu S J, et al. A high-precision horizon-based illumination modeling method for the lunar surface using pyramidal LOLA data[J]. Icarus, 2023,390:115302. DOI:10.1016/j.icarus.2022.115302

文章导航

/