专栏:“从地球到深空:遥感地理信息技术拓展与创新”

基于月貌基元的月球撞击坑识别与分类

  • 王娇 , 1, 3 ,
  • 李俊娇 1 ,
  • 芮琦瑶 1 ,
  • 程维明 , 2, *
展开
  • 1.中国地质大学(北京)信息工程学院,北京 100083
  • 2.中国科学院地理科学与资源研究所 地理信息科学与技术全国重点实验室,北京 100101
  • 3.河北省地理空间数字孪生与协同优化重点实验室,北京 100083
* 程维明(1973— ),男,甘肃天水人,研究员,主要从事数字地貌及月球形貌研究。E-mail:

王 娇(1990— ),女,宁夏固原人,副教授,主要从事月球形貌研究。E-mail:

Copy editor: 黄光玉 , 蒋树芳

收稿日期: 2024-08-27

  修回日期: 2024-12-18

  网络出版日期: 2025-03-25

基金资助

国家重点研发计划项目(2022YFF0711400)

国家重点研发计划项目(2019YFE0123300)

国家自然科学基金项目(41801361)

Lunar Impact Crater Identification and Classification Based on Lunar Geomorphons

  • WANG Jiao , 1, 3 ,
  • LI Junjiao 1 ,
  • RUI Qiyao 1 ,
  • CHENG Weiming , 2, *
Expand
  • 1. School of Information and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
  • 2. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • 3. Hebei Key Laboratory of Geospatial Digital Twin and Collaborative Optimization, China University of Geosciences (Beijing), Beijing 100083, China
* CHENG Weiming, E-mail:

Received date: 2024-08-27

  Revised date: 2024-12-18

  Online published: 2025-03-25

Supported by

National Key Research and Development project(2022YFF0711400)

National Key Research and Development project(2019YFE0123300)

National Natural Science Foundation of China(41801361)

摘要

【目的】月球撞击坑的识别与分类对探测器着陆点的选择和月球年龄的估算至关重要。然而,由于撞击作用形成了复杂的月貌形态,像素级不可再分的微观月貌特征的研究面临诸多挑战。基于此,对微观月貌特征的识别需要采用尺度自适应的方法,同时应充分考虑微观月貌特征来完善月球撞击坑分类图谱。【方法】本研究引入了一种基于地貌基元的尺度自适应算法,用于自动分类微观月貌。首先,该算法通过优化地形参数来定义月球地貌的局部三元模式,并依据优化后的局部三元模式确定月貌基元。然后,依据地形起伏度和坡度的规则将月貌基元进行聚合,以识别大范围内的月球撞击地貌单元。最后,基于月貌基元构建加加林环形山区域的月球撞击坑分类图谱。【结果】该方法提取了月球微观形貌基本单元,实现了多尺度撞击坑识别,精确率达到88.24%,召回率为84.96%, F1分数为86.57%。最终建立了撞击坑分类图谱,包括简单酒窝型、小规模碗型、小规模平底型、小规模中央峰型、中等平原型、中等中央峰型、大环状平原型和特大复杂型。【结论】该方法在识别撞击坑时展现了稳健性和高效率,并且识别和分类后的撞击坑为月球地貌学和地质学分析提供了多尺度的地貌单元。

本文引用格式

王娇 , 李俊娇 , 芮琦瑶 , 程维明 . 基于月貌基元的月球撞击坑识别与分类[J]. 地球信息科学学报, 2025 , 27(4) : 820 -834 . DOI: 10.12082/dqxxkx.2025.240474

Abstract

[Objectives] The identification and classification of lunar impact craters are critical for selecting spacecraft landing sites and estimating the Moon's geological age. However, the complex morphological features created by impact processes post significant challenges to studying micro-scale lunar surface features, which are often indivisible at the pixel level. Addressing these challenges requires a scale-adaptive approach that incorporates micro-scale characteristics to refine lunar impact crater classification maps. [Methods] This study introduces a scale-adaptive algorithm based on geomorphons for the automatic classification of micro-scale lunar surface features. First, terrain parameters are optimized to define local ternary patterns of lunar geomorphology. These patterns are then used to determine lunar geomorphons. Next, the geomorphons are aggregated according to rules based on relief amplitude and slope to identify lunar impact geomorphic units on a larger scale. Finally, a classification map of lunar impact craters in the Gagarin Crater region is constructed using the identified geomorphons. [Results] The proposed method successfully identifies the optimal parameters for adaptively scaling lunar geomorphons by incorporating the unique characteristics of lunar surface features. Using a four-parameter constraint window, lunar geomorphons are refined at locally optimal spatial scales through the computation of local ternary patterns integrated with the theory of lunar geomorphological evolution. The results reveal that the generated maps of lunar geomorphons exhibit significant spatial aggregation, well-defined classification boundaries, and high accuracy in representing lunar impact craters. The method effectively captures the internal structural details of impact craters, providing a pixel-level depiction of their morphological features. The multi-scale identification of impact craters achieves a precision of 88.24%, a recall of 84.96%, and an F1 score of 86.57%. A classification schema for impact craters was established, including simple pit, small-scale bowl, small-scale flat bottom, small-scale central peak, medium flat bottom, medium central peak, large ring plain, and giant complex. [Conclusions] This method demonstrates robustness and high efficiency in crater identification, offering multi-scale geomorphological units and serving as a foundational tool for scale-based lunar scientific research. It provides technical support for identifying and classifying multi-scale lunar impact craters, contributing to advancements in lunar morphological and geological analysis.

[1]
李春来, 严韦, 刘建军, 等. 中国月球探测促进月球与行星科学创新发展[J]. 中国科学(地球科学), 2023, 53(11):2437-2456.

[Li C L, Yan W, Liu J J, et al. Innovative developments in lunar and planetary science promoted by China's lunar exploration[J]. Scientia Sinica (Terrae), 2023, 53(11):2437-2456.]

[2]
王丹, 丁孝忠, 韩同林, 等. 月球第谷区域内“冻融地貌”的发现[J]. 地球学报, 2017, 38(6):971-980.

[Wang D, Ding X Z, Han T L, et al. The discovery of the "freezing and thawing landform" of tycho impact crater of the moon[J]. Acta Geoscientica Sinica, 2017, 38(6):971-980.] DOI:10.3975/cagsb.2017.06.12

[3]
岳宗玉, 邸凯昌, 刘建忠. 行星表面撞击坑统计定年原理及应用[J]. 矿物岩石地球化学通报, 2021, 40(5):1130-1142.

[Yue Z Y, Di K C, Liu J Z. Principle and application of planetary surface dating method based on crater size-frequency distribution measurements[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2021, 40(5):1130-1142.] DOI:10.19658/j.issn.1007-2802.2021.40.060

[4]
Pan L, Quantin-Nataf C, Breton S, et al. The impact origin and evolution of Chryse Planitia on Mars revealed by buried craters[J]. Nature Communications, 2019, 10(1):4257. DOI:10.1038/s41467-019-12162-0

PMID

[5]
Wu B, Dong J, Wang Y R, et al. Landing site selection and characterization of Tianwen-1 (Zhurong rover) on Mars[J]. Journal of Geophysical Research (Planets), 2022, 127(4):e07137. DOI:10.1029/2021JE007137

[6]
曾兴国, 左维, 李春来, 等. 中国月球地形制图研究进展[J]. 武汉大学学报(信息科学版), 2022, 47(4):570-578.

[Zeng X G, Zuo W, Li C L, et al. Review on progress of lunar topographic mapping in China[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4):570-578.] DOI:10.13203/j.whugis20190377

[7]
毕杰皓, 应申, 陈驰, 等. 典型地貌特征的行星可视化制图——以火星与月球为例[J]. 测绘通报, 2024(6):115-119.

DOI

[Bi J H, Ying S, Chen C, et al. Comparison of the visualization of typical planetary topography: The example of Mars and the Moon[J]. Bulletin of Surveying and Mapping, 2024(6):115-119.] DOI:10.13474/j.cnki.11-2246.2024.0620

[8]
Lewis H A G. The times atlas of the Moon[J]. Theoretical Applied Mechanics, 1969,37:110.

[9]
Robbins S J. New crater calibrations for the lunar crater-age chronology[J]. Earth and Planetary Science Letters, 2014, 403:188-198. DOI:10.1016/j.epsl.2014.06.038

[10]
陈动, 胡凡, 张立强, 等. 撞击坑识别方法研究综述[J]. 中国科学(地球科学), 2024, 54(6):1745-1768.

[Chen D, Hu F, Zhang L Q, et al. Summary of research on crater identification methods[J]. Scientia Sinica (Terrae), 2024, 54(6):1745-1768.] DOI:10.1360/SSTe-2023-0152

[11]
Slezak T J, Radebaugh J, Christiansen E H, et al. Classification of planetary craters using outline-based morphometrics[J]. Journal of Volcanology and Geothermal Research, 2020,407:107102. DOI:10.1016/j.jvolgeores.2020.107102

[12]
Wang Y Q, Xie H, Huang Q, et al. Small lunar crater detection from LROC NAC using statistically constrained path morphologies and unsupervised discriminate correlation filters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024,62:4601124. DOI:10.1109/TGRS.2024.3401874

[13]
江泓昆, 田小林, 许敖敖. 一种基于特征空间的月球撞击坑自动识别算法[J]. 中国科学(物理学·力学·天文学), 2013, 43(11):1430-1437.

[Jiang H K, Tian X L, Xu A A. An automatic algorithm for detecting lunar impact craters in a defined feature space[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2013, 43(11):1430-1437.] DOI:10.1360/132013-321

[14]
Zuo W, Li C L, Yu L J, et al. Shadow-highlight feature matching automatic small crater recognition using high-resolution digital orthophoto map from Chang’E Missions[J]. Acta Geochimica, 2019, 38(4):541-554. DOI:10.1007/s11631-019-00356-8

[15]
Kang Z Z, Wang X K, Hu T, et al. Coarse-to-fine extraction of small-scale lunar impact craters from the CCD images of the Chang' E lunar orbiters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):181-193. DOI:10.1109/TGRS.2018.2852717

[16]
邸凯昌, 刘斌, 刘召芹, 等. 月球遥感制图回顾与展望[J]. 遥感学报, 2016, 20(5):1230-1242.

[Di K C, Liu B, Liu Z Q, et al. Review and prospect of lunar mapping using remote sensing data[J]. Journal of Remote Sensing, 2016, 20(5):1230-1242.] DOI:10.11834/jrs20166158

[17]
岳宗玉, 史珂, 邸凯昌, 等. 撞击坑研究进展与展望[J]. 中国科学(地球科学), 2023, 53(11):2482-2493.

[Yue Z Y, Shi K, Di K C, et al. Progresses and prospects of impact crater studies[J]. Scientia Sinica (Terrae), 2023, 53(11):2482-2493.]

[18]
罗中飞, 康志忠, 刘心怡. 融合嫦娥一号CCD影像与DEM数据的月球撞击坑自动提取和识别[J]. 测绘学报, 2014, 43(9):924-930.

DOI

[Luo Z F, Kang Z Z, Liu X Y. The automatic extraction and recognition of lunar impact craters fusing CCD images and DEM data of Chang' E-1[J]. Acta Geodetica et Cartographica Sinica, 2014, 43(9):924-930.] DOI:10.13485/j.cnki.11-2089.2014.0137

[19]
Chen M, Liu D Y, Qian K J, et al. Lunar crater detection based on terrain analysis and mathematical morphology methods using digital elevation models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7):3681-3692. DOI:10.1109/TGRS.2018.2806371

[20]
Duan Q, Liu R G, Liu Y. Automatic lunar crater detection based on DEM data using a max curvature detection method[J]. IEEE Geoscience and Remote Sensing Letters, 2024,21:8001205. DOI:10.1109/LGRS.2024.3368705

[21]
Wang Y R, Wu B. Active machine learning approach for crater detection from planetary imagery and digital elevation models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8):5777-5789. DOI:10.1109/TGRS.2019.2902198

[22]
Yang J T, Kang Z Z. Bayesian network-based extraction of lunar impact craters from optical images and DEM data[J]. Advances in Space Research, 2019, 63(11):3721-3737. DOI:10.1016/j.asr.2019.02.005

[23]
Wang Y W, Qin C Z, Cheng W M, et al. Automatic crater detection by training random forest classifiers with legacy crater map and spatial structural information derived from digital terrain analysis[J]. Annals of the American Association of Geographers, 2022, 112(5):1328-1349. DOI:10.1080/24694452.2021.1960473

[24]
Liu Q Y, Cheng W M, Yan G J, et al. A machine learning approach to crater classification from topographic data[J]. Remote Sensing, 2019, 11(21):2594. DOI:10.3390/rs11212594

[25]
李海鹏, 董有福, 张昊. 基于多层次分割的月表撞击坑自动检测[J]. 测绘通报, 2023(11):18-22.

DOI

[Li H P, Dong Y F, Zhang H. Lunar impact crater detection based on multilevel segmentation[J]. Bulletin of Surveying and Mapping, 2023(11):18-22.] DOI:10.13474/j.cnki.11-2246.2023.0321

[26]
Melosh H J. Impact cratering: a geologic process[M]// New York: Oxford University Press Oxford: Clarendon Press, 1989.

[27]
Dietz R. The face of the moon. ralph B. Baldwin[J]. The Journal of Geology, 1950,58:81-82. DOI:10.1086/625700

[28]
Heiken G, Vaniman D, French B. Lunar sourcebook: A user's guide to the moon[M]. Cambridge University Press, 1991:753.

[29]
Stöffler D, Ryder G, Ivanov B A, et al. Cratering history and lunar chronology[M]// New Views of the Moon, 2006, 60(1):519-596. DOI:10.1515/9781501509537-009

[30]
何姝珺, 陈建平, 李珂, 等. 月表典型区撞击坑形态分类及分布特征[J]. 地学前缘, 2012, 19(6):83-89.

[He S J, Chen J P, Li K, et al. The morphological classification and distribution characteristics of the craters in the LQ-4 Area[J]. Earth Science Frontiers, 2012, 19(6):83-89.]

[31]
丁孝忠, 韩坤英, 韩同林, 等. 月球虹湾幅(LQ-4)地质图的编制[J]. 地学前缘, 2012, 19(6):15-27.

[Ding X Z, Han K Y, Han T L, et al. Compilation of the geological map of sinus iridum quadrangle of the moon(LQ-4)[J]. Earth Science Frontiers, 2012, 19(6):15-27.]

[32]
赵国祥. 利用色彩叠加原理研究月球撞击坑分布特征——以“嫦娥二号”为例[D]. 成都: 成都理工大学, 2013.

[Zhao G X. The study of lunar craters distribution characteristics through color superposition principle—the case of “Chang'E-2”[D]. Chengdu: Chengdu University of Technology, 2013.]

[33]
王娇, 程维明, 周成虎. 全月球撞击坑识别、分类及空间分布[J]. 地理科学进展, 2015, 34(3):330-339.

[Wang J, Cheng W M, Zhou C H. A global inventory of lunar craters: identification, classification, and distribution[J]. Progress in Geography, 2015, 34(3):330-339.] DOI:10.11820/dlkxjz.2015.03.008

[34]
程维明, 刘樯漪, 王娇, 等. 全月球形貌类型分类方法初探[J]. 地球科学进展, 2018, 33(9):885-897.

DOI

[Cheng W M, Liu Q Y, Wang J, et al. A preliminary study of classification method on lunar topography and landforms[J]. Advances in Earth Science, 2018, 33(9):885-897.] DOI: 10.3778/j.issn.1002-8331.1111-0435

[35]
Zhou Y, Yan L, Zhao H, et al. A new classification and index calibration of lunar impact craters for digital terrain analysis[J]. Astronomy Reports, 2019, 63(12):1069-1079. DOI:10.1134/S1063772919120084.

[36]
Jasiewicz J, Stepinski T F. Geomorphons: A pattern recognition approach to classification and mapping of landforms[J]. Geomorphology, 2013, 182:147-156. DOI:10.1016/j.geomorph.2012.11.005

[37]
Libohova Z, Winzeler H E, Lee B, et al. Geomorphons: Landform and property predictions in a glacial moraine in Indiana landscapes[J]. CATENA, 2016, 142:66-76. DOI: 10.1016/j.catena.2016.01.002

[38]
Stepinski T F, Jasiewicz J. Geomorphons: A new approach to classification of landforms[Z]. Geomorphometry 2011 Redlands, 2011.

[39]
Jasiewicz J, Stepinski T F. R. geomorphon. Geographic resource analysis and support system (GRASS) 7.0.5, GRASS GIS 7.0.5svnreference manual[Z]. 2015.

[40]
程维明. 月球形貌科学概论[M]. 北京: 地质出版社, 2016.

[Cheng W M. Introduction to lunar morphology science[M]. Beijing: Geological Publishing House, 2016.]

[41]
欧阳自远, 刘建忠. 月球形成演化与月球地质图编研[J]. 地学前缘, 2014, 21(6):1-6.

[OuYang Z Y, Liu J Z. The origin and evolution of the Moon and its geological mapping[J]. Earth Science Frontiers, 2014, 21(6):1-6.] DOI:10.13745/j.esf.2014.06.001

[42]
Gault D E, Sonett C P. Laboratory simulation of pelagic asteroidal impact: Atmospheric injection, benthic topography, and the surface wave radiation field[M]// Geological Society of America Special Papers. Geological Society of America, 1982:69-92. DOI:10.1130/spe190-p69

[43]
Holsapple K A, Schmidt R M. Point source solutions and coupling parameters in cratering mechanics[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B7):6350-6376. DOI:10.1029/jb092ib07p06350

[44]
金铭, 丁孝忠, 韩坤英, 等. 基于多源遥感数据的月海智海盆地特征分析及演化模式研究[J]. 中国地质, 2024, 51(6):1807-1821.

[Jin M, Ding X Z, Han K Y, et al. Characteristics analysis and evolution model of Ingenii Basin on the moon based on multisource remote sensing data[J]. Geology in China, 2024, 51(6):1807-1821.]

[45]
Arkani-Hamed J. On the thermal history of the moon[J]. The Moon, 1973, 6(3):380-383. DOI:10.1007/BF00562212

[46]
Head J W. The significance of substrate characteristics in determining morphology and morphometry of lunar craters[C]. 7th Lunar Science Conference, 1976,3:2913-2929.

[47]
Dence M R., Grieve R A, Robertson P B. Terrestrial impact structures: principal characteristics and energy considerations[C]// proceedings of the Impact and Explosion Cratering: Planetary and Terrestrial Implications, 1977.

[48]
肖智勇, 岳宗玉, 谢明刚, 等. 月球的撞击历史及其对月表物质的改造[J]. 矿物岩石地球化学通报, 2023, 42(3):462-477.

[Xiao Z Y, Yue Z Y, Xie M G, et al. Impact history of the Moon and its modification of lunar surface materials[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(3):462-477.] DOI:10.19658/j.issn.1007-2802.2023.42.051

[49]
Jay Melosh H. Global tectonics of a despun planet[J]. Icarus, 1977, 31(2):221-243. DOI:10.1016/0019-1035(77)90035-5

[50]
Ullrich G W, Roddy D J, Simmons G. Numerical simulations of a 20-ton TNT detonation on the earth's surface and implications concerning the mechanics of central uplift formation[C]// Impact and explosion cratering: Planetary and terrestrial implications; Proceedings of the Symposium on Planetary Cratering Mechanics, 1977:959-982.

[51]
Croft S K. Hypervelocity Impact Craters in Icy Media[C]. Lunar and Planetary Science Conference, 1981:190-192.

[52]
Schaber G G. Lava flows in Mare Imbrium: Geologic evaluation from apollo orbital photography[C]// Proceedings of the Lunar Science Conference, 1973(4):73.

[53]
Honda C, Morota T, Yokota Y, et al. Morphologic characteristics of the vallis schrteri[C]// 40th Lunar and Planetary Science Conference, 2009,1524.

[54]
Cruikshank D P, Wood C A. Lunar rilles and Hawaiian volcanic features: Possible analogues[J]. The Moon, 1972, 3(4):412-447. DOI:10.1007/BF00562463

[55]
Hulme G. A review of lava flow processes related to the formation of lunar sinuous rilles[J]. Geophysical surveys, 1982, 5(3):245-279. DOI:10.1007/BF01454018

[56]
罗林, 刘建忠, 张莉, 等. 月球线性构造分类体系研究[J]. 岩石学报, 2017, 33(10):3285-3301.

[Luo L, Liu J Z, Zhang L, et al. Research on the classification system of lunar lineaments[J]. Acta Petrologica Sinica, 2017, 33(10):3285-3301.]

[57]
Ji J Z, Guo D J, Liu J Z, et al. The 1:2, 500, 000-scale geologic map of the global Moon[J]. Science Bulletin, 2022, 67(15):1544-1548. DOI:10.1016/j.scib.2022.05.021

[58]
邵天瑞, 韩坤英, 金铭, 等. 月球背面加加林地区地质及演化特征报[J]. 地质力学学报, 2024, 30(3):519-534.

[Shao T R, Han K Y, Jin M, et al. Geological and evolutionary characteristics of the Gagarin Region on the far side of the Moon[J]. Journal of Geomechanics, 2024, 30(3):519-534.] DOI:10.12090/j.issn.1006-6616.2023035

[59]
Barker M K, Mazarico E, Neumann G A, et al. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera[J]. Icarus, 2016, 273:346-355. DOI:10.1016/j.icarus.2015.07.039

[60]
Robbins S J. A new global database of lunar impact craters >1-2 km: 1. crater locations and sizes, comparisons with published databases, and global analysis[J]. Journal of Geophysical Research: Planets, 2019, 124(4):871-892. DOI:10.1029/2018je005592

[61]
Head J W 3rd, Fassett C I, Kadish S J, et al. Global distribution of large lunar craters: Implications for resurfacing and impactor populations[J]. Science, 2010, 329(5998):1504-1507. DOI:10.1126/science.1195050

PMID

[62]
Wang J, Cheng W M, Zhou C H. A Chang'E-1 global catalog of lunar impact craters[J]. Planetary and Space Science, 2015, 112:42-45. DOI:10.1016/j.pss.2015.04.012

文章导航

/