基于月貌基元的月球撞击坑识别与分类
王 娇(1990— ),女,宁夏固原人,副教授,主要从事月球形貌研究。E-mail: jiaowang@cugb.edu.cn |
Copy editor: 黄光玉 , 蒋树芳
收稿日期: 2024-08-27
修回日期: 2024-12-18
网络出版日期: 2025-03-25
基金资助
国家重点研发计划项目(2022YFF0711400)
国家重点研发计划项目(2019YFE0123300)
国家自然科学基金项目(41801361)
Lunar Impact Crater Identification and Classification Based on Lunar Geomorphons
Received date: 2024-08-27
Revised date: 2024-12-18
Online published: 2025-03-25
Supported by
National Key Research and Development project(2022YFF0711400)
National Key Research and Development project(2019YFE0123300)
National Natural Science Foundation of China(41801361)
【目的】月球撞击坑的识别与分类对探测器着陆点的选择和月球年龄的估算至关重要。然而,由于撞击作用形成了复杂的月貌形态,像素级不可再分的微观月貌特征的研究面临诸多挑战。基于此,对微观月貌特征的识别需要采用尺度自适应的方法,同时应充分考虑微观月貌特征来完善月球撞击坑分类图谱。【方法】本研究引入了一种基于地貌基元的尺度自适应算法,用于自动分类微观月貌。首先,该算法通过优化地形参数来定义月球地貌的局部三元模式,并依据优化后的局部三元模式确定月貌基元。然后,依据地形起伏度和坡度的规则将月貌基元进行聚合,以识别大范围内的月球撞击地貌单元。最后,基于月貌基元构建加加林环形山区域的月球撞击坑分类图谱。【结果】该方法提取了月球微观形貌基本单元,实现了多尺度撞击坑识别,精确率达到88.24%,召回率为84.96%, F1分数为86.57%。最终建立了撞击坑分类图谱,包括简单酒窝型、小规模碗型、小规模平底型、小规模中央峰型、中等平原型、中等中央峰型、大环状平原型和特大复杂型。【结论】该方法在识别撞击坑时展现了稳健性和高效率,并且识别和分类后的撞击坑为月球地貌学和地质学分析提供了多尺度的地貌单元。
王娇 , 李俊娇 , 芮琦瑶 , 程维明 . 基于月貌基元的月球撞击坑识别与分类[J]. 地球信息科学学报, 2025 , 27(4) : 820 -834 . DOI: 10.12082/dqxxkx.2025.240474
[Objectives] The identification and classification of lunar impact craters are critical for selecting spacecraft landing sites and estimating the Moon's geological age. However, the complex morphological features created by impact processes post significant challenges to studying micro-scale lunar surface features, which are often indivisible at the pixel level. Addressing these challenges requires a scale-adaptive approach that incorporates micro-scale characteristics to refine lunar impact crater classification maps. [Methods] This study introduces a scale-adaptive algorithm based on geomorphons for the automatic classification of micro-scale lunar surface features. First, terrain parameters are optimized to define local ternary patterns of lunar geomorphology. These patterns are then used to determine lunar geomorphons. Next, the geomorphons are aggregated according to rules based on relief amplitude and slope to identify lunar impact geomorphic units on a larger scale. Finally, a classification map of lunar impact craters in the Gagarin Crater region is constructed using the identified geomorphons. [Results] The proposed method successfully identifies the optimal parameters for adaptively scaling lunar geomorphons by incorporating the unique characteristics of lunar surface features. Using a four-parameter constraint window, lunar geomorphons are refined at locally optimal spatial scales through the computation of local ternary patterns integrated with the theory of lunar geomorphological evolution. The results reveal that the generated maps of lunar geomorphons exhibit significant spatial aggregation, well-defined classification boundaries, and high accuracy in representing lunar impact craters. The method effectively captures the internal structural details of impact craters, providing a pixel-level depiction of their morphological features. The multi-scale identification of impact craters achieves a precision of 88.24%, a recall of 84.96%, and an F1 score of 86.57%. A classification schema for impact craters was established, including simple pit, small-scale bowl, small-scale flat bottom, small-scale central peak, medium flat bottom, medium central peak, large ring plain, and giant complex. [Conclusions] This method demonstrates robustness and high efficiency in crater identification, offering multi-scale geomorphological units and serving as a foundational tool for scale-based lunar scientific research. It provides technical support for identifying and classifying multi-scale lunar impact craters, contributing to advancements in lunar morphological and geological analysis.
[1] |
李春来, 严韦, 刘建军, 等. 中国月球探测促进月球与行星科学创新发展[J]. 中国科学(地球科学), 2023, 53(11):2437-2456.
[
|
[2] |
王丹, 丁孝忠, 韩同林, 等. 月球第谷区域内“冻融地貌”的发现[J]. 地球学报, 2017, 38(6):971-980.
[
|
[3] |
岳宗玉, 邸凯昌, 刘建忠. 行星表面撞击坑统计定年原理及应用[J]. 矿物岩石地球化学通报, 2021, 40(5):1130-1142.
[
|
[4] |
|
[5] |
|
[6] |
曾兴国, 左维, 李春来, 等. 中国月球地形制图研究进展[J]. 武汉大学学报(信息科学版), 2022, 47(4):570-578.
[
|
[7] |
毕杰皓, 应申, 陈驰, 等. 典型地貌特征的行星可视化制图——以火星与月球为例[J]. 测绘通报, 2024(6):115-119.
[
|
[8] |
|
[9] |
|
[10] |
陈动, 胡凡, 张立强, 等. 撞击坑识别方法研究综述[J]. 中国科学(地球科学), 2024, 54(6):1745-1768.
[
|
[11] |
|
[12] |
|
[13] |
江泓昆, 田小林, 许敖敖. 一种基于特征空间的月球撞击坑自动识别算法[J]. 中国科学(物理学·力学·天文学), 2013, 43(11):1430-1437.
[
|
[14] |
|
[15] |
|
[16] |
邸凯昌, 刘斌, 刘召芹, 等. 月球遥感制图回顾与展望[J]. 遥感学报, 2016, 20(5):1230-1242.
[
|
[17] |
岳宗玉, 史珂, 邸凯昌, 等. 撞击坑研究进展与展望[J]. 中国科学(地球科学), 2023, 53(11):2482-2493.
[
|
[18] |
罗中飞, 康志忠, 刘心怡. 融合嫦娥一号CCD影像与DEM数据的月球撞击坑自动提取和识别[J]. 测绘学报, 2014, 43(9):924-930.
[
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
李海鹏, 董有福, 张昊. 基于多层次分割的月表撞击坑自动检测[J]. 测绘通报, 2023(11):18-22.
[
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
何姝珺, 陈建平, 李珂, 等. 月表典型区撞击坑形态分类及分布特征[J]. 地学前缘, 2012, 19(6):83-89.
[
|
[31] |
丁孝忠, 韩坤英, 韩同林, 等. 月球虹湾幅(LQ-4)地质图的编制[J]. 地学前缘, 2012, 19(6):15-27.
[
|
[32] |
赵国祥. 利用色彩叠加原理研究月球撞击坑分布特征——以“嫦娥二号”为例[D]. 成都: 成都理工大学, 2013.
[
|
[33] |
王娇, 程维明, 周成虎. 全月球撞击坑识别、分类及空间分布[J]. 地理科学进展, 2015, 34(3):330-339.
[
|
[34] |
程维明, 刘樯漪, 王娇, 等. 全月球形貌类型分类方法初探[J]. 地球科学进展, 2018, 33(9):885-897.
[
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
程维明. 月球形貌科学概论[M]. 北京: 地质出版社, 2016.
[
|
[41] |
欧阳自远, 刘建忠. 月球形成演化与月球地质图编研[J]. 地学前缘, 2014, 21(6):1-6.
[
|
[42] |
|
[43] |
|
[44] |
金铭, 丁孝忠, 韩坤英, 等. 基于多源遥感数据的月海智海盆地特征分析及演化模式研究[J]. 中国地质, 2024, 51(6):1807-1821.
[
|
[45] |
|
[46] |
|
[47] |
|
[48] |
肖智勇, 岳宗玉, 谢明刚, 等. 月球的撞击历史及其对月表物质的改造[J]. 矿物岩石地球化学通报, 2023, 42(3):462-477.
[
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
罗林, 刘建忠, 张莉, 等. 月球线性构造分类体系研究[J]. 岩石学报, 2017, 33(10):3285-3301.
[
|
[57] |
|
[58] |
邵天瑞, 韩坤英, 金铭, 等. 月球背面加加林地区地质及演化特征报[J]. 地质力学学报, 2024, 30(3):519-534.
[
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
/
〈 |
|
〉 |