地球信息科学理论与方法

基于卡尔曼“估计-校正”循环网络的暴雨临近预测

  • 刘杰 , 1 ,
  • 张彤 , 2, * ,
  • 王培晓 3 ,
  • 韩士元 4 ,
  • 冷亮 5 ,
  • 肖艳姣 5
展开
  • 1.济南大学信息科学与工程学院,济南 250022
  • 2.武汉大学 测绘遥感信息工程国家重点实验室,武汉 430079
  • 3.中国科学院地理科学与资源研究所 地理信息科学与技术全国重点实验室,北京 100101
  • 4.山东女子学院人工智能学院,济南 250300
  • 5.中国气象局武汉暴雨研究所 中国气象局流域强降水重点开放实验室/暴雨监测预警湖北省重点实验室,武汉 430205
* 张 彤(1979— ),男,福建武夷山人,教授,主要从事时空机器学习、高分遥感解译、交通地理信息系统研究。E-mail:

刘 杰(1995— ),女,山东济南人,博士,主要从事时空预测研究。E-mail:

Copy editor: 黄光玉 , 蒋树芳

收稿日期: 2024-08-16

  修回日期: 2024-11-04

  网络出版日期: 2025-03-25

基金资助

湖北省技术创新计划重点研发专项项目(2023BCB119)

湖北省自然科学基金(创新发展联合基金)(2022CFD012)

山东省自然科学基金项目(ZR2024QD179)

山东省自然科学基金项目(ZR2020KF006)

国家自然科学基金项目(42401524)

国家自然科学基金项目(62373164)

中国气象局气象能力提升联合研究专项(22NLTSY015)

Rainstorm Nowcasting Using Kalman "Estimation-Correction" Recurrent Network

  • LIU Jie , 1 ,
  • ZHANG Tong , 2, * ,
  • WANG Peixiao 3 ,
  • HAN Shiyuan 4 ,
  • LENG Liang 5 ,
  • XIAO Yanjiao 5
Expand
  • 1. School of Information Science and Engineering, University of Jinan, Jinan 250022, China
  • 2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
  • 3. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • 4. School of Artificial Intelligence, Shandong Women's University, Jinan 250300, China
  • 5. China Meteorological Administration Basin Heavy Rainfall Key Laboratory/Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China
* ZHANG Tong, E-mail:

Received date: 2024-08-16

  Revised date: 2024-11-04

  Online published: 2025-03-25

Supported by

Hubei Province Key R&D Plan Project(2023BCB119)

Hubei Provincial Natural Science Foundation of China(2022CFD012)

National Natural Science Foundation of Shandong Province(ZR2024QD179)

National Natural Science Foundation of Shandong Province(ZR2020KF006)

National Natural Science Foundation of China(42401524)

National Natural Science Foundation of China(62373164)

The Joint Research Program for Enhancing Meteorological Capabilities by the China Meteorological Administration(22NLTSY015)

摘要

【目的】精确的暴雨临近预测在防灾减灾、工农业生产和交通运输等多方面起着重要作用,对于保障社会经济发展与人民财产安全具有十分重要的意义。然而现有暴雨智能预测方法没有充分考虑暴雨过程、观测以及建模等环节的不确定性问题,阻碍了预测准确性和稳定性的提升。【方法】本文提出基于卡尔曼“估计-校正”循环网络的暴雨临近预测方法,在个别变化理论约束下估计气象状态,并在卡尔曼滤波的指导下依据估计误差进行气象状态校正,以实现准确和可靠的暴雨预测。所提“估计-校正”网络包括个别变化约束的深度状态估计和估计误差指导的气象状态校正2个核心单元;前者根据历史气象状态估计下一时间步的气象状态及误差;后者根据估计误差和观测误差进行气象状态的校正;二者共同提升暴雨预测精度和稳定性。【结果】在ERA5和NCEP数据集上的实验证明,所提方法的暴雨预测准确性指标CSI比所对比的基线方法提升了5%,并以稳定性指标SPREAD≈0.5的成绩取得了良好稳定性。【结论】验证了在深度学习中融合滤波理论缓解不确定性问题的可行性。

本文引用格式

刘杰 , 张彤 , 王培晓 , 韩士元 , 冷亮 , 肖艳姣 . 基于卡尔曼“估计-校正”循环网络的暴雨临近预测[J]. 地球信息科学学报, 2025 , 27(4) : 888 -899 . DOI: 10.12082/dqxxkx.2025.240452

Abstract

[Objectives] Accurate rainstorm prediction plays an important role in disaster prevention and mitigation, industrial and agricultural production, and transportation, making it crucial for safeguarding social and economic development as well as people's property. However, existing intelligent rainstorm prediction methods fail to fully account for the uncertainties inherent in the rainstorm process itself, as well as in observation and modelling, which limits the improvement of prediction accuracy and stability. [Methods] To address this issue, an "estimation-correction" recurrent network based on filtering theory is proposed. This network estimates the meteorological state with the constraints of substantial derivative and corrects the state according to estimation errors, enabling accurate and reliable rainstorm prediction. The "estimation-correction" network consists of two main units, the state estimation unit and the state correction unit. Constrained by substantial derivative, the state estimation unit estimates the meteorological state and error for the next time step based on historical meteorological states. Guided by estimation error, the state correction unit corrects meteorological state by fusing estimation and observation errors. The two units work together to enhance prediction accuracy and stability. [Results] Experiments conducted on the ERA5 and NCEP reanalysis datasets demonstrate that the proposed method improves the Critical Success Index (CSI) of rainstorm prediction by 5% compared to other methods. Furthermore, it achieves good stability, as indicated by a stability metric (SPREAD≈0.5). [Conclusions] These results validate the feasibility of integrating filtering theory with deep learning to address uncertainty in rainstorm prediction.

[1]
赵晓凤, 刘维. 2021年秋收作物生长季农业气象条件评价[J]. 中国农业气象, 2022, 43(1):72-76.

[Zhao X F, Liu W. Analysis report of agrometeorological conditions during growing season of autumn-harvest crops in 2021[J]. Chinese Journal of Agrometeorology, 2022, 43(1):72-76.] DOI:10.3969/j.issn.1000-6362.2022.01.007

[2]
苏爱芳, 吕晓娜, 崔丽曼, 等. 郑州"7.20"极端暴雨天气的基本观测分析[J]. 暴雨灾害, 2021, 40(5):445-454.

[Su A F, Lv X N, Cui L M, et al. The basic observational analysis of "7.20" extreme rainstorm in Zhengzhou. Torrential Rain and Disasters, 2021, 40(5):445-454.] DOI:10.3969/j.issn.1004-9045.2021.05.001

[3]
Sun J, Niu Z, Innanen K A, et al. A theory-guided deep-learning formulation and optimization of seismic waveform inversionTheory-guided DL and seismic inversion[J]. Geophysics, 2020, 85(2):R87-R99. DOI:10.1190/GEO2019-0138.1

[4]
Bech J, Chau J L. Doppler radar observations: Weather radar, wind profiler, ionospheric radar, and other advanced applications[M]. BoD-Books on Demand, 2012. DOI:10.5772/2036

[5]
Buehner M, Jacques D. Non-Gaussian deterministic assimilation of radar-derived precipitation accumulations[J]. Monthly Weather Review, 2020, 148(2):783-808. DOI:10.1175/MWR-D-19-0199.1

[6]
Kashinath K, Mustafa M, Albert A, et al. Physics-informed machine learning: case studies for weather and climate modelling[J]. Philosophical Transactions of the Royal Society A, 2021, 379(2194):20200093. DOI:10.1098/rsta.2020.0093

[7]
薛丰昌, 章超钦, 王文硕, 等. 基于自注意力和门控循环神经网络的雷达回波外推算法研究[J]. 气象学报, 2024, 82(1):127-135.

[Xue F C, Zhang C Q, Wang W S, et al. Improving radar echo extrapolation algorithms based on self-attention and gated recurrent neural networks[J]. Acta Meteorologica Sinica, 2024, 82(1):127-135.] DOI:10.11676/qxxb2024.20230053

[8]
王善昊, 胡志群, 王福增, 等. 基于ConvLSTM融合RMAPS-NOW数据的雷达回波外推研究[J]. 气象学报, 2024, 82(4):1-14.

[Wang S H, Hu Z Q, Wang F Z, et al. A study on radar echo extrapolation based on ConvLSTM fusion of RMAPS-NOW data[J]. Acta Meteorologica Sinica, 2024, 82(4):1-14.] DOI:10.11676/qxxb2024.20230135

[9]
李泽椿, 张玲, 钱奇峰, 等. 中央气象台台风预报业务的发展及思考[J]. 大气科学学报, 2020, 43(1):10-19.

[Li Z C, Zhang L, Qian Q F, et al. The development and consideration of typhoon forecast operation of national meteorological center[J]. Transactions of Atmospheric Sciences, 2020, 43(1):10-19.] DOI:10.13878/j.cnki.dqkxxb.20200110015

[10]
Bai C, Sun F, Zhang J, et al. Rainformer: Features extraction balanced network for radar-based precipitation nowcasting[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. DOI:10.1109/LGRS.2022.3162882

[11]
Zhang T, Liu J, Wang J. Rainstorm prediction via a deep spatio-temporal-attributed affinity network[J]. Geocarto International, 2022, 37(26):13079-13097. DOI:10.1080/10 106049.2022.2076914

[12]
Huang X, Luo C, Ye Y, et al. Location-refining neural network: A new deep learning-based framework for Heavy Rainfall Forecast[J]. Computers & Geosciences, 2022,166:105152. DOI:10.1016/j.cageo.2022.105152

[13]
Hess P, Boers N. Deep learning for improving numerical weather prediction of heavy rainfall[J]. Journal of Advances in Modeling Earth Systems, 2022, 14(3):e2021M S002765. DOI:10.1029/2021MS002765

[14]
Hess P, Drüke M, Petri S, et al. Physically constrained generative adversarial networks for improving precipitation fields from Earth system models[J]. Nature Machine Intelligence, 2022,4:828-839. DOI:10.1038/s42256-022-00540-1

[15]
Gao Z, Shi X, Han B, et al. PreDiff: Precipitation nowcasting with latent diffusion models[J]. Advances in Neural Information Processing Systems, 2023,36:78621-78656.

[16]
Ritvanen J, Harnist B, Aldana M, et al. Advection-free convolutional neural network for convective rainfall nowcasting[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16:1654-1667. DOI:10.1109/JSTARS.2023.3238016

[17]
Zhang Y, Long M, Chen K, et al. Skilful nowcasting of extreme precipitation with NowcastNet[J]. Nature, 2023, 619(7970):526-532. DOI:10.1038/s41586-023-06184-4

[18]
Li L, Carver R, Lopez-Gomez I, et al. Generative emulation of weather forecast ensembles with diffusion models[J]. Science Advances, 2024, 10(13):eadk4489. DOI:10.1126/sciadv.adk4489

[19]
Pathak J, Subramanian S, Harrington P, et al. FourCastNet: A global data-driven high-resolution weather model using adaptive fourier neural operators[C]. International Conference on Learning Representations, 2022. DOI:10.48550/arXiv.2202.11214

[20]
Hu Y, Chen L, Wang Z, et al. SwinVRNN: A data-driven ensemble forecasting model via learned distribution perturbation[J]. Journal of Advances in Modeling Earth Systems, 2023, 15(2):e2022MS003211. DOI:10.1029/2022 M S003211

[21]
Price I, Sanchez-Gonzalez A, Alet F, et al. Gencast: Diffusion-based ensemble forecasting for medium-range weather[J]. arXiv preprint arXiv:2312.15796, 2023.

[22]
Anderson J D, Wendt J. Computational fluid dynamics: 206[M]. Springer, 1995.

[23]
Hersbach H, Bell B, Berrisford P, et al. ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. DOI:10.24381/cds.adbb2d47

[24]
Saha S, et al. 2011. NCEP climate forecast system version 2 (CFSv2) selected hourly time-series products. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D6N877VB

[25]
Zhou K, Zheng Y, Li B, et al. Forecasting different types of convective weather: A deep learning approach[J]. Journal of Meteorological Research, 2019, 33(5):797-809. DOI:10.1007/s13351-019-8162-6

[26]
Ravuri S, Lenc K, Willson M, et al. Skilful precipitation nowcasting using deep generative models of radar[J]. Nature, 2021, 597(7878):672-677. DOI:10.1038/s41586-02103854-z

文章导航

/