中国森林火灾驱动力及其空间异质性
刘小情(1999— ),湖南株洲人,女,硕士生,研究方向为灾害监测与预警。E-mail: danicaliu@whu.edu.cn |
Copy editor: 蒋树芳 , 黄光玉
收稿日期: 2024-06-19
修回日期: 2025-03-01
网络出版日期: 2025-04-23
基金资助
国家重点研发计划项目(2022YFC3005704)
Analyzing the Driving Forces and Spatial Heterogeneity of Forest Fires in China
Received date: 2024-06-19
Revised date: 2025-03-01
Online published: 2025-04-23
Supported by
the National Key R&D Program of China,(2022YFC3005704)
【目的】 森林作为陆地生态系统的主体,具有调节气候、保持水土等多种功能。在森林面临的众多危害中,火灾对森林资源的危害日益严重。分析影响森林火灾的因素对于预防森林火灾和制定相关策略至关重要。【方法】 本研究选取中国为研究区,识别森林火灾主要驱动因素,选取植被、气候、地形、人类活动等森林火灾相关驱动因子,利用地理探测器进行全局森林火灾的驱动力分析。并基于植被分区方案,定量计算了8个植被区划的森林火灾空间分布驱动力。【结果】 ① 全局尺度上,森林火灾的空间分布受植被覆盖度(fvc)的影响最大,解释力为0.130 2,气候因子对森林火灾的驱动力相对较强;驱动因子交互作用均为增强,森林火灾的发生是各驱动因子综合作用的结果;且森林火灾驱动因子与森林火灾发生概率之间存在非线性关系和影响阈值; ② 局域尺度上,气候和植被作为森林火灾的关键驱动因素,很大程度上解释了各个分区森林火灾的空间分布。如气温(tem)是寒温带针叶林区域(CTNF)、温带针叶、落叶阔叶混交林(TCBMF)、青藏高原高寒植被区域(AVTP)3个区域的最高解释力驱动因子,解释力分别为0.313、0.410、0.052;风速(win)是暖温带落叶阔叶林区域(WTBF)的最高解释力驱动因子,解释力为0.279。【结论】 在不同区域,森林火灾主要驱动因子和因子的交互作用均有差异,定量验证了森林火灾空间分布驱动力的空间异质性。研究结果有助于了解中国不同区域森林火灾的驱动因素,并帮助政策制定者设计火灾管理战略,以减少潜在的火灾危害。
刘小情 , 任福 , 岳韦霆 , 高云骥 . 中国森林火灾驱动力及其空间异质性[J]. 地球信息科学学报, 2025 , 27(5) : 1214 -1227 . DOI: 10.12082/dqxxkx.2025.240359
[Objectives] Forests, as the backbone of terrestrial ecosystems, play crucial roles in climate regulation and soil and water conservation. Among the many threats to forests, the impact of forest fires is becoming increasingly severe. Analyzing the factors influencing forest fires is essential for preventing forest fires and formulating relevant strategies. [Methods] This study focuses on China, using multi-source data related to fires, vegetation, climate, topography, and human activities to analyze the spatial heterogeneity of forest fire driving forces from multiple perspectives. [Results] The findings reveal that: (1) At a global scale, the spatial distribution of forest fires is most influenced by FVC, with an explanatory power of 0.130 2, while climate factors exert a relatively strong influence. The interaction between driving factors is enhanced, and forest fire occurrence results from the combined influence of multiple factors. Moreover, a nonlinear relationship and impact threshold exist between these driving factors and the probability of forest fire occurrence. (2) At a local scale, climate and vegetation serve as key driving factors behind forest fires, significantly explaining their spatial distribution across different zones. Temperature is the most influential factor in the Cold Temperate Needle-leaf Forest region, the Temperate Coniferous and Broad-leaved Mixed Forest region, and the Alpine Vegetation of the Tibetan Plateau region, with explanatory powers of 0.313, 0.41, and 0.052, respectively. In contrast, wind speed is the dominant factor in the Warm Temperate Broad-leaved Forest region, with an explanatory power of 0.279. [Conclusions] The primary driving factors and their interactions vary across different regions, quantitatively confirming the spatial heterogeneity of forest fire driving forces. This research contributes to a national-scale understanding of forest fire drivers and fire hazard distribution in China, assisting policymakers in designing fire management strategies to mitigate potential fire risks.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
杨铭鑫, 李俊, 同小娟, 等. 2001—2020年中国森林植被EVI对气候因子的响应[J]. 生态学报, 2024, 44(23):10850-10863.
[
|
[26] |
郑景云, 尹云鹤, 李炳元. 中国气候区划新方案[J]. 地理学报, 2010, 65(1):3-12.
[
|
[27] |
许肖璐, 张方敏, 邓汗青, 等. 1961—2020年中国降水等级的变化特征[J]. 水土保持研究, 2024, 31(2):181-189.
[
|
[28] |
王芳, 李炳元, 田思雨, 等. 中国生态地理区划更新和优化[J]. 地理学报, 2024, 79(1):3-16.
[
|
[29] |
杜建华, 宫殷婷, 蒋丽伟. 中国森林火灾发生特征及其与主要气候因子的关系研究[J]. 林业资源管理, 2019(2):7-14.
[
|
[30] |
|
[31] |
|
[32] |
周小成, 汪小钦. EOS—MODIS数据林火识别算法的验证和改进[J]. 遥感技术与应用, 2006, 21(3):206-211.
[
|
[33] |
|
[34] |
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
[
|
[35] |
牟凤云, 黄淇, 陈林. 基于优化地理探测器的生态环境质量驱动力分析[J]. 水土保持研究, 2024, 31(1):440-449.
[
|
[36] |
高文晶, 程诺, 张露月, 等. 基于参数最优地理探测器的福建省植被NPP时空分异及驱动力探究[J]. 西北林学院学报, 2024, 39(4):120-130.
[
|
[37] |
宋志杰. 林火原理和林火预报[M]. 北京: 气象出版社, 1991.
[
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
张新时. 中华人民共和国植被图(1:1 000 000)[M]. 北京: 地质出版社, 2007.
[
|
[47] |
|
[48] |
尹赛男, 王东昶, 单延龙, 等. 黑龙江省3种主要火源引发森林火灾的次数和面积时空分布特征[J]. 林业科学, 2021, 57(6):115-124.
[
|
[49] |
张恒, 周振东, 王玉霞. 内蒙古大兴安岭3种主要火源引发森林火灾次数和面积的时空分布特征[J]. 西南林业大学学报(自然科学), 2024, 44(3):166-174.
[
|
/
〈 |
|
〉 |