地理空间分析综合应用

中国森林火灾驱动力及其空间异质性

  • 刘小情 , 1 ,
  • 任福 , 1, 2, 3, 4, * ,
  • 岳韦霆 5 ,
  • 高云骥 5
展开
  • 1.武汉大学资源与环境科学学院,武汉 430079
  • 2.武汉大学 地理信息系统教育部重点实验室,武汉 430079
  • 3.自然资源部数字制图与国土信息应用重点实验室,武汉 430079
  • 4.地球空间信息技术协同创新中心,武汉 430079
  • 5.西南交通大学地球科学与工程学院,成都 610036
*任 福(1976— ),内蒙古包头人,男,博士,教授,主要研究方向为地理信息系统智能服务、智能专题地图制图。 E-mail:

刘小情(1999— ),湖南株洲人,女,硕士生,研究方向为灾害监测与预警。E-mail:

Copy editor: 蒋树芳 , 黄光玉

收稿日期: 2024-06-19

  修回日期: 2025-03-01

  网络出版日期: 2025-04-23

基金资助

国家重点研发计划项目(2022YFC3005704)

Analyzing the Driving Forces and Spatial Heterogeneity of Forest Fires in China

  • LIU Xiaoqing , 1 ,
  • REN Fu , 1, 2, 3, 4, * ,
  • YUE Weiting 5 ,
  • GAO Yunji 5
Expand
  • 1. School of Resources and Environmental Sciences, Wuhan University, Wuhan 430079, China
  • 2. Key Laboratory of Geographic Information System, Ministry of Education, Wuhan University, Wuhan 430079, China
  • 3. Key Laboratory of Digital Cartography and Land Information Application, Ministry of Natural Resources, Wuhan University, Wuhan 430079, China
  • 4. Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, China
  • 5. Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 610036, China
*REN Fu, E-mail:

Received date: 2024-06-19

  Revised date: 2025-03-01

  Online published: 2025-04-23

Supported by

the National Key R&D Program of China,(2022YFC3005704)

摘要

【目的】 森林作为陆地生态系统的主体,具有调节气候、保持水土等多种功能。在森林面临的众多危害中,火灾对森林资源的危害日益严重。分析影响森林火灾的因素对于预防森林火灾和制定相关策略至关重要。【方法】 本研究选取中国为研究区,识别森林火灾主要驱动因素,选取植被、气候、地形、人类活动等森林火灾相关驱动因子,利用地理探测器进行全局森林火灾的驱动力分析。并基于植被分区方案,定量计算了8个植被区划的森林火灾空间分布驱动力。【结果】 ① 全局尺度上,森林火灾的空间分布受植被覆盖度(fvc)的影响最大,解释力为0.130 2,气候因子对森林火灾的驱动力相对较强;驱动因子交互作用均为增强,森林火灾的发生是各驱动因子综合作用的结果;且森林火灾驱动因子与森林火灾发生概率之间存在非线性关系和影响阈值; ② 局域尺度上,气候和植被作为森林火灾的关键驱动因素,很大程度上解释了各个分区森林火灾的空间分布。如气温(tem)是寒温带针叶林区域(CTNF)、温带针叶、落叶阔叶混交林(TCBMF)、青藏高原高寒植被区域(AVTP)3个区域的最高解释力驱动因子,解释力分别为0.313、0.410、0.052;风速(win)是暖温带落叶阔叶林区域(WTBF)的最高解释力驱动因子,解释力为0.279。【结论】 在不同区域,森林火灾主要驱动因子和因子的交互作用均有差异,定量验证了森林火灾空间分布驱动力的空间异质性。研究结果有助于了解中国不同区域森林火灾的驱动因素,并帮助政策制定者设计火灾管理战略,以减少潜在的火灾危害。

本文引用格式

刘小情 , 任福 , 岳韦霆 , 高云骥 . 中国森林火灾驱动力及其空间异质性[J]. 地球信息科学学报, 2025 , 27(5) : 1214 -1227 . DOI: 10.12082/dqxxkx.2025.240359

Abstract

[Objectives] Forests, as the backbone of terrestrial ecosystems, play crucial roles in climate regulation and soil and water conservation. Among the many threats to forests, the impact of forest fires is becoming increasingly severe. Analyzing the factors influencing forest fires is essential for preventing forest fires and formulating relevant strategies. [Methods] This study focuses on China, using multi-source data related to fires, vegetation, climate, topography, and human activities to analyze the spatial heterogeneity of forest fire driving forces from multiple perspectives. [Results] The findings reveal that: (1) At a global scale, the spatial distribution of forest fires is most influenced by FVC, with an explanatory power of 0.130 2, while climate factors exert a relatively strong influence. The interaction between driving factors is enhanced, and forest fire occurrence results from the combined influence of multiple factors. Moreover, a nonlinear relationship and impact threshold exist between these driving factors and the probability of forest fire occurrence. (2) At a local scale, climate and vegetation serve as key driving factors behind forest fires, significantly explaining their spatial distribution across different zones. Temperature is the most influential factor in the Cold Temperate Needle-leaf Forest region, the Temperate Coniferous and Broad-leaved Mixed Forest region, and the Alpine Vegetation of the Tibetan Plateau region, with explanatory powers of 0.313, 0.41, and 0.052, respectively. In contrast, wind speed is the dominant factor in the Warm Temperate Broad-leaved Forest region, with an explanatory power of 0.279. [Conclusions] The primary driving factors and their interactions vary across different regions, quantitatively confirming the spatial heterogeneity of forest fire driving forces. This research contributes to a national-scale understanding of forest fire drivers and fire hazard distribution in China, assisting policymakers in designing fire management strategies to mitigate potential fire risks.

[1]
Morales-Hidalgo D, Oswalt S N, Somanathan E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015[J]. Forest Ecology and Management, 2015, 352:68-77. DOI:10.1016/j.foreco.2015.06.011

[2]
Keenan R J, Reams G A, Achard F, et al. Dynamics of global forest area: Results from the FAO global forest resources assessment 2015[J]. Forest Ecology and Management, 2015, 352:9-20. DOI:10.1016/j.foreco.2015.06.014

[3]
Pastro L A, Dickman C R, Letnic M. Burning for biodiversity or burning biodiversity?Prescribed burn vs. wildfire impacts on plants, lizards, and mammals[J]. Ecological Applications, 2011, 21(8):3238-3253. DOI:10.1890/10-2351.1

[4]
Zhang X, Lan M, Ming J K, et al. Spatiotemporal heterogeneity of forest fire occurrence based on remote sensing data: An analysis in Anhui, China[J]. Remote Sensing, 2023, 15(3):598. DOI:10.3390/rs15030598

[5]
Hasan S S, Zhang Y, Chu X, et al. The role of big data in China's sustainable forest management[J]. Forestry Economics Review, 2019, 1(1):96-105. DOI:10.1108/fer-04-2019-0013

[6]
Pereira M G, Trigo R M, da Camara C C, et al. Synoptic patterns associated with large summer forest fires in Portugal[J]. Agricultural and Forest Meteorology, 2005, 129(1/2):11-25. DOI:10.1016/j.agrformet.2004.12.007

[7]
Collins K M, Price O F, Penman T D. Spatial patterns of wildfire ignitions in south-eastern Australia[J]. International Journal of Wildland Fire, 2015, 24(8):1098. DOI:10.1071/wf15054

[8]
Ganteaume A, Camia A, Jappiot M, et al. A review of the main driving factors of forest fire ignition over Europe[J]. Environmental Management, 2013, 51(3):651-662. DOI:10.1007/s00267-012-9961-z

PMID

[9]
Sulova A, Jokar Arsanjani J. Exploratory analysis of driving force of wildfires in Australia: An application of machine learning within google earth engine[J]. Remote Sensing, 2021, 13(1):10. DOI:10.3390/rs13010010

[10]
Kim S J, Lim C H, Kim G S, et al. Multi-temporal analysis of forest fire probability using socio-economic and environmental variables[J]. Remote Sensing, 2019, 11(1):86. DOI:10.3390/rs11010086

[11]
Iban M C, Sekertekin A. Machine learning based wildfire susceptibility mapping using remotely sensed fire data and GIS: A case study of Adana and Mersin provinces, Turkey[J]. Ecological Informatics, 2022, 69:101647. DOI: 10.1016/j.ecoinf.2022.101647

[12]
de Santana R O, Delgado R C, Schiavetti A. Modeling susceptibility to forest fires in the Central Corridor of the Atlantic Forest using the frequency ratio method[J]. Journal of Environmental Management, 2021, 296:113343. DOI: 10.1016/j.jenvman.2021.113343

[13]
Pourtaghi Z S, Pourghasemi H R, Rossi M. Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran[J]. Environmental Earth Sciences, 2015, 73(4):1515-1533. DOI:10.1007/s12665-014-3502-4

[14]
Hong H Y, Jaafari A, Zenner E K. Predicting spatial patterns of wildfire susceptibility in the Huichang County, China: An integrated model to analysis of landscape indicators[J]. Ecological Indicators, 2019, 101:878-891. DOI: 10.1016/j.ecolind.2019.01.056

[15]
Liu J, Wang Y K, Guo H Y, et al. Spatial and temporal patterns and driving factors of forest fires based on an optimalparameter-based geographic detector in the Panxi region, Southwest China[J]. Fire Ecology, 2024, 20(1):27. DOI:10.1186/s42408-024-00257-z

[16]
Wang W Q, Zhao F J, Wang Y X, et al. Seasonal differences in the spatial patterns of wildfire drivers and susceptibility in the southwest mountains of China[J]. Science of The Total Environment, 2023, 869:161782. DOI:10.1016/j.scitotenv.2023.161782

[17]
Guo X Y, Zhang H Y, Wang Y Q, et al. The driving factors and their interactions of fire occurrence in Greater Khingan Mountains, China[J]. Journal of Mountain Science, 2020, 17(11):2674-2690. DOI:10.1007/s11629-020-6036-0

[18]
Ma W Y, Feng Z K, Cheng Z X, et al. Identifying forest fire driving factors and related impacts in China using random forest algorithm[J]. Forests, 2020, 11(5):507. DOI:10.3390/f11050507

[19]
Wu Z C, Li M Z, Wang B, et al. Analysis of factors related to forest fires in different forest ecosystems in China[J]. Forests, 2022, 13(7):1021. DOI:10.3390/f13071021

[20]
Song Y Z, Wang J F, Ge Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data[J]. GIScience & Remote Sensing, 2020, 57(5):593-610. DOI:10.1080/15481603.2020.1760434

[21]
Guo F T, Wang G Y, Su Z W, et al. What drives forest fire in Fujian, China?Evidence from logistic regression and Random Forests[J]. International Journal of Wildland Fire, 2016, 25(5):505. DOI:10.1071/wf15121

[22]
Pan J H, Wang W G, Li J F. Building probabilistic models of fire occurrence and fire risk zoning using logistic regression in Shanxi Province, China[J]. Natural Hazards, 2016, 81(3):1879-1899. DOI:10.1007/s11069-016-2160-0

[23]
Elia M, D’Este M, Ascoli D, et al. Estimating the probability of wildfire occurrence in Mediterranean landscapes using Artificial Neural Networks[J]. Environmental Impact Assessment Review, 2020, 85:106474. DOI:10.1016/j.eiar.2020.106474

[24]
Joshi J, Sukumar R. Improving prediction and assessment of global fires using multilayer neural networks[J]. Scientific Reports, 2021, 11(1):3295. DOI:10.1038/s41598-021-81233-4

PMID

[25]
杨铭鑫, 李俊, 同小娟, 等. 2001—2020年中国森林植被EVI对气候因子的响应[J]. 生态学报, 2024, 44(23):10850-10863.

[ Yang M X, Li J, Tong X J, et al. Response of forest vegetation Enhanced Vegetation Index to climatic factors in China in 2001—2020[J]. Acta Ecologica Sinica, 2024, 44(23):10850-10863. ] DOI:10.20103/j.stxb.202311032391

[26]
郑景云, 尹云鹤, 李炳元. 中国气候区划新方案[J]. 地理学报, 2010, 65(1):3-12.

[ Zheng J Y, Yin Y H, Li B Y. A new scheme for climate regionalization in China[J]. Acta Geographica Sinica, 2010, 65(1):3-12. ]

DOI

[27]
许肖璐, 张方敏, 邓汗青, 等. 1961—2020年中国降水等级的变化特征[J]. 水土保持研究, 2024, 31(2):181-189.

[ Xu X L, Zhang F M, Deng H Q, et al. Changes in precipitation grades in China from 1961-2020[J]. Research of Soil and Water Conservation, 2024, 31(2):181-189. ] DOI:10.13869/j.cnki.rswc.2024.02.003.

[28]
王芳, 李炳元, 田思雨, 等. 中国生态地理区划更新和优化[J]. 地理学报, 2024, 79(1):3-16.

DOI

[ Wang F, Li B Y, Tian S Y, et al. Updated scheme for eco-geographical regionalization in China[J]. Acta Geographica Sinica, 2024, 79(1):3-16.] DOI:10.11821/dlxb202401001

[29]
杜建华, 宫殷婷, 蒋丽伟. 中国森林火灾发生特征及其与主要气候因子的关系研究[J]. 林业资源管理, 2019(2):7-14.

[ Du J H, Gong Y T, Jiang L W. Study on the characteristics of forest fires in China and their relationship with major climatic factors[J]. Forest Resources Management, 2019(2):7-14.] DOI:10.13466/j.cnki.lyzygl.2019.02.002

[30]
Giglio L, Schroeder W, Justice C O. The collection 6 MODIS active fire detection algorithm and fire products[J]. Remote Sensing of Environment, 2016, 178:31-41. DOI:10.1016/j.rse.2016.02.054

PMID

[31]
Zhuang Y, Li R Y, Yang H, et al. Understanding temporal and spatial distribution of crop residue burning in China from 2003 to 2017 using MODIS data[J]. Remote Sensing, 2018, 10(3):390. DOI:10.3390/rs10030390

[32]
周小成, 汪小钦. EOS—MODIS数据林火识别算法的验证和改进[J]. 遥感技术与应用, 2006, 21(3):206-211.

[ Zhou X C, Wang X Q. Validate and improvement on arithmetic of identifying forest fire based on EOS-MODIS data[J]. Remote Sensing Technology and Application, 2006, 21(3):206-211.] DOI:10.3969/j.issn.1004-0323.2006.03.007

[33]
Jain P, Coogan S C P, Subramanian S G, et al. A review of machine learning applications in wildfire science and management[J]. Environmental Reviews, 2020, 28(4):478-505. DOI:10.1139/er-2020-0019

[34]
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.

DOI

[ Wang J F, Xu C D. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1):116-134.] DOI:10.11821/dlxb201701010

[35]
牟凤云, 黄淇, 陈林. 基于优化地理探测器的生态环境质量驱动力分析[J]. 水土保持研究, 2024, 31(1):440-449.

[ Mu F Y, Huang Q, Chen L. Eco-environmental quality driving force detection using optimized geographic detector[J]. Research of Soil and Water Conservation, 2024, 31(1):440-449.] DOI:10.13869/j.cnki.rswc.2024.01.010

[36]
高文晶, 程诺, 张露月, 等. 基于参数最优地理探测器的福建省植被NPP时空分异及驱动力探究[J]. 西北林学院学报, 2024, 39(4):120-130.

[ Gao W J, Cheng N, Zhang L Y, et al. Spatio-temporal differentiation and driving force of vegetation NPP in Fujian Province based on optimal parameter geographical detector[J]. Journal of Northwest Forestry University, 2024, 39(4):120-130. ]

[37]
宋志杰. 林火原理和林火预报[M]. 北京: 气象出版社, 1991.

[ Song Z J. Forest fire principle and forest fire forecast[M]. Beijing: China Meteorological Press, 1991. ]

[38]
Tian X R, Zhao F J, Shu L F, et al. Distribution characteristics and the influence factors of forest fires in China[J]. Forest Ecology and Management, 2013, 310:460-467. DOI:10.1016/j.foreco.2013.08.025

[39]
Lin X F, Li Z Y, Chen W J, et al. Forest fire prediction based on long- and short-term time-series network[J]. Forests, 2023, 14(4):778. DOI:10.3390/f14040778

[40]
Li F, Zeng X D, Levis S. A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model[J]. Biogeosciences, 2012, 9(7):2761-2780. DOI:10.5194/bg-9-2761-2012

[41]
Teckentrup L, Harrison S P, Hantson S, et al. Response of simulated burned area to historical changes in environmental and anthropogenic factors: A comparison of seven fire models[J]. Biogeosciences, 2019, 16(19):3883-3910. DOI:10.5194/bg-16-3883-2019

[42]
Archibald S, Scholes R J, Roy D P, et al. Southern African fire regimes as revealed by remote sensing[J]. International Journal of Wildland Fire, 2010, 19(7):861. DOI:10.1071/wf10008

[43]
Joiner J, Guanter L, Lindstrot R, et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: Methodology, simulations, and application to GOME-2[J]. Atmospheric Measurement Techniques, 2013, 6(10):2803-2823. DOI:10.5194/amt-6-2803-2013

[44]
Chuvieco E, Cocero D, Riaño D, et al. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating[J]. Remote Sensing of Environment, 2004, 92(3):322-331. DOI:10.1016/j.rse.2004.01.019

[45]
Guo F T, Su Z W, Wang G Y, et al. Understanding fire drivers and relative impacts in different Chinese forest ecosystems[J]. Science of The Total Environment, 2017, 605:411-425. DOI:10.1016/j.scitotenv.2017.06.219

[46]
张新时. 中华人民共和国植被图(1:1 000 000)[M]. 北京: 地质出版社, 2007.

[ Zhang X S. Vegetation map of the People's Republic of China (1:1 000 000)[M]. Beijing: Geology Press, 2007. ]

[47]
Zumbrunnen T, Pezzatti G B, Menéndez P, et al. Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland[J]. Forest Ecology and Management, 2011, 261(12):2188-2199. DOI:10.1016/j.foreco.2010.10.009

[48]
尹赛男, 王东昶, 单延龙, 等. 黑龙江省3种主要火源引发森林火灾的次数和面积时空分布特征[J]. 林业科学, 2021, 57(6):115-124.

[ Yin S N, Wang D C, Shan Y L, et al. Spatial and temporal distribution of forest fires (frequency and area) caused by three main fire sources in Heilongjiang Province[J]. Scientia Silvae Sinicae, 2021, 57(6):115-124. ] DOI:10.11707/j.1001-7488.20210613

[49]
张恒, 周振东, 王玉霞. 内蒙古大兴安岭3种主要火源引发森林火灾次数和面积的时空分布特征[J]. 西南林业大学学报(自然科学), 2024, 44(3):166-174.

[ Zhang H, Zhou Z D, Wang Y X. Temporal and spatial distribution characteristics of forest fires caused by 3 main fire sources in daxing'an mountains, Inner Mongolia[J]. Journal of Southwest Forestry University (Natural Sciences), 2024, 44(3):166-174. ]

文章导航

/