地球信息科学理论与方法

贝叶斯时空统计方法及应用进展与趋势

  • 李俊明 , 1, * ,
  • 胡雅璇 1 ,
  • 王楠楠 2 ,
  • 王斯雅琦 1 ,
  • 王若兰 1 ,
  • 吕琳 1 ,
  • 房紫晴 1
展开
  • 1.山西财经大学统计学院,太原 030006
  • 2.内蒙古包头市自然资源调查利用中心,包头 014010

作者贡献:Author Contributions

李俊明、胡雅璇和王楠楠参与了内容构思、文献收集与初稿写作;王斯雅琦和王若兰参与了初稿写作;李俊明、吕琳和房紫晴参与了论文修改。所有作者均阅读并同意最终稿件的提交。

LI Junming, HU Yaxuan, and WANG Nannan contributed to the conceptualization, literature collection, and initial draft writing; WANG Siyaqi and WANG Ruolan contributed to the initial draft writing; LI Junming, LÜ Lin and FANG Ziqing contributed to the manuscript revision. All authors read and approved the final manuscript for submission.

李俊明(1979— ),男,山西太原人,博士,教授,主要从事贝叶斯时空统计方面的研究。E-mail: ;

收稿日期: 2025-04-07

  修回日期: 2025-06-17

  网络出版日期: 2025-07-07

基金资助

国家社科基金重大项目(24&ZD183)

Advances and Trends in Bayesian Spatio-Temporal Statistical Methods and Applications

  • LI Junming , 1, * ,
  • HU Yaxuan 1 ,
  • WANG Nannan 2 ,
  • WANG Siyaqi 1 ,
  • WANG Ruolan 1 ,
  • LYU Lin 1 ,
  • FANG Ziqing 1
Expand
  • 1. School of Statistics, Shanxi University of Finance and Economics, Taiyuan 030006, China
  • 2. Baotou Natural Resources Survey and Utilization Center, Inner Mongolia, Baotou 014010, China
*LI Junming, E-mail:

Received date: 2025-04-07

  Revised date: 2025-06-17

  Online published: 2025-07-07

Supported by

National Social Science Fund of China(Major Project)(24&ZD183)

摘要

【意义】经典统计推断依赖大样本与独立同分布前提,但时空数据却往往不满足这两大前提,因此,经典统计框架下的时空统计方法具有一定理论局限;相较而言,贝叶斯统计范式下的时空统计方法通过融合先验信息、引入参数随机性,形成统一的概率推断框架,可考虑更多不确定性,并能有效克服时空数据中的小样本和非独立问题,在时空统计建模中体现出较强的自身优势,并受到广泛关注和快速发展。【进展】本文首先从方法论演进角度出发,从传统贝叶斯时空统计与贝叶斯时空机器学习两个视角系统梳理了主流的贝叶斯时空统计模型,前者包括贝叶斯时空演化层次模型、贝叶斯时空回归层次模型、贝叶斯空间面板数据模型、贝叶斯时空地理加权回归模型、贝叶斯时空变系数模型和贝叶斯网格化时空高斯过程模型,后者包括贝叶斯时空因果森林模型、贝叶斯时空神经网络模型和贝叶斯时空图卷积神经网络模型;后又从实际应用方面,重点回顾了贝叶斯时空统计模型在公共卫生、环境科学、经济社会与公共安全、能源与工程等领域的应用。【展望】贝叶斯时空统计方法需在多源异构数据建模、深度学习融合、因果推断机制引入及高性能计算优化等方面实现突破,以兼顾理论完备性与实践适应性,推动其发展为具备因果推断、自适应泛化及智能分析的下一代时空建模范式。

本文引用格式

李俊明 , 胡雅璇 , 王楠楠 , 王斯雅琦 , 王若兰 , 吕琳 , 房紫晴 . 贝叶斯时空统计方法及应用进展与趋势[J]. 地球信息科学学报, 2025 , 27(7) : 1501 -1519 . DOI: 10.12082/dqxxkx.2025.250161

Abstract

[Objectives] Classical statistical inference typically relies on the assumptions of large sample sizes and independent, identically distributed (i.i.d.) observations, conditions that spatio-temporal data frequently violate, leading to inherent theoretical limitations in conventional approaches. In contrast, Bayesian spatio-temporal statistical methods integrate prior knowledge and treat all model parameters as random variables, thereby forming a unified probabilistic inference framework. This enables the incorporation of a broader range of uncertainties and offers robustness in modelling small samples and dependent structures, making Bayesian methods highly advantageous and increasingly influential in spatio-temporal analysis. [Progress] From the perspective of methodological evolution, this paper systematically reviews mainstream Bayesian spatio-temporal statistical models from two complementary perspectives: traditional Bayesian statistics and the Bayesian machine learning. The former includes Bayesian Spatio-temporal Evolutionary Hierarchical Models, Bayesian Spatio-temporal Regression Hierarchical Models, Bayesian Spatial Panel Data Models, Bayesian Geographically Weighted Spatio-temporal Regression Models, Bayesian Spatio-temporal Varying Coefficient Models, and Bayesian Spatio-temporal Meshed Gaussian Process Model. The latter includes Bayesian Causal Forest Models, Bayesian Spatio-temporal Neural Networks, and Bayesian Graph Convolutional Neural Networks. In terms of application, the review highlights representative studies across domains such as public health, environmental sciences, socio-economic and public safety, as well as energy and engineering. [Prospect] Bayesian spatio-temporal statistical methods need to achieve breakthroughs in multi-source heterogeneous data modeling, integration with deep learning, incorporation of causal inference mechanisms, and optimization of high-performance computing. These advances are essential to balance theoretical rigor with practical adaptability and to promote the development of a next-generation spatio-temporal modeling paradigm characterized by causal inference, adaptive generalization, and intelligent analysis.

利益冲突:Conflicts of Interest 所有作者声明不存在利益冲突。

All authors disclose no relevant conflicts of interest.

[1]
Bernardinelli L, Clayton D, Pascutto C, et al. Bayesian analysis of space-time variation in disease risk[J]. Statistics in Medicine, 1995, 14(21/22):2433-2443. DOI: 10.1002/sim.4780142112

[2]
Li G, Haining R, Richardson S, et al. Space-time variability in burglary risk: A Bayesian spatio-temporal modelling approach[J]. Spatial Statistics, 2014, 9:180-191. DOI:10.1016/j.spasta.2014.03.006

[3]
Li J, Han X, Jin M, et al. Globally analysing spatiotemporal trends of anthropogenic PM2.5 concentration and population's PM2.5 exposure from 1998 to 2016[J]. Environment International, 2019, 128:46-62. DOI:10.1016/j.envint.2019.04.026

[4]
Zhang X, Gu X, Cheng C, et al. Spatiotemporal heterogeneity of PM2.5 and its relationship with urbanization in North China from 2000 to 2017[J]. Science of the Total Environment, 2020, 744:140925. DOI:10.1016/j.scitotenv.2020.140925

[5]
Li J, Wang N, Wang J, et al. Spatiotemporal evolution of the remotely sensed global continental PM2.5 concentration from 2000-2014 based on Bayesian statistics[J]. Environmental Pollution, 2018, 238:471-481. DOI:10.1016/j.envpol.2018.03.050

[6]
Bennett J E, Li G Q, Foreman K, et al. The future of life expectancy and life expectancy inequalities in England and Wales: Bayesian spatiotemporal forecasting[J]. The Lancet, 2015, 386(9989):163-170. DOI:10.1016/S0140-6736(15)60296-3

[7]
Li J, Han X, Zhang X, et al. Spatiotemporal evolution of global population ageing from 1960 to 2017[J]. BMC Public Health, 2019, 19:127. DOI:10.1186/s12889-019-6465-2

PMID

[8]
Wang L, Xu C, Hu M, et al. Spatio-temporal variation in tuberculosis incidence and risk factors for the disease in a region of unbalanced socio-economic development[J]. BMC Public Health, 2021, 21(1):1817. DOI:10.1186/s12889-021-11833-2

PMID

[9]
Li J, Liang J, Wang J, et al. Spatiotemporal trends and ecological determinants in maternal mortality ratios in 2,205 Chinese counties, 20102013: A Bayesian modelling analysis[J]. PLoS Medicine, 2020, 17(5):e1003114. DOI:10.1371/journal.pmed.1003114

[10]
Ge Y, Yuan Y, Hu S, et al. Space-time variability analysis of poverty alleviation performance in China’s poverty-stricken areas[J]. Spatial Statistics, 2017, 21:460-474. DOI:10.1016/j.spasta.2017.02.010

[11]
刘大千, 宋伟, 修春亮. 贝叶斯方法在犯罪时空格局研究上的应用——以长春市为例[J]. 地理科学, 2022, 42(5): 820-830.

DOI

[Liu D, Song W, Xiu C, et al. Understanding the spatiotemporal pattern of crimes in Changchun, China: A Bayesian modeling approach[J]. Scientia Geographica Sinica, 2022, 42(5): 820-830.] DOI:110.13249/j.cnki.sgs.2022.05.008

[12]
Han F, Li J. Assessing impacts and determinants of China’s environmental protection tax on improving air quality at provincial level based on Bayesian statistics[J]. Journal of Environmental Management, 2020, 271:111017. DOI:10.1016/j.jenvman.2020.111017

[13]
Wang Z, Ye W, Chen X, et al. Spatio-temporal pattern, matching level and prediction of ageing and medical resources in China[J]. BMC Public Health, 2023, 23(1):1155. DOI:10.1186/s12889-023-15945-9

PMID

[14]
Li J, Chen X, Han X, et al. Spatiotemporal matching between medical resources and population ageing in China from 2008 to 2017[J]. BMC Public Health, 2020, 20(1):845. DOI:10.1186/s12889-020-08976-z

PMID

[15]
韩秀兰, 崔月彤, 李俊明. 基于贝叶斯时空层次模型的中国宏观税负时空演化特征研究[J]. 统计与信息论坛, 2022, 37(8):67-74.

[Han X L, Cui Y T, Li J M. Study on the spatio-temporal evolution of China's macro tax burden based on BSHM[J]. Journal of Statistics and Information, 2022, 37(8):67-74.] DOI:10.3969/j.issn.1007-3116.2022.08.006

[16]
韩菲, 闫书淇. 环境保护税能否促进区域绿色全要素生产率增长——基于贝叶斯时空统计的实证研究[J]. 经济问题, 2023(7):103-112.

[Han F, Yan S Q. Can environmental protection tax promote regional green total factor productivity Growth? An empirical study based on Bayesian space-time statistics[J]. On Economic Problems, 2023(7):103-112.] DOI:10.16011/j.cnki.jjwt.2023.07.014

[17]
Besag J, York J, Mollié A. Bayesian image restoration, with two applications in spatial statistics[J]. Annals of the Institute of Statistical Mathematics, 1991, 43(1):1-20. DOI:10.1007/BF00116466

[18]
Li J, Wang J, Wang N, et al. A Bayesian space-time hierarchical model for remotely sensed lattice data based on multiscale homogeneous statistical units[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7):2151-2161. DOI: 10.1109/JSTARS.2018.2818286

[19]
Vicente G, Goicoa T, Ugarte M D. Multivariate Bayesian spatio-temporal P-spline models to analyze crimes against women[J]. Biostatistics, 2023, 24(3):562-584. DOI:10.1093/biostatistics/kxab042

[20]
Das P, Ghosal S. Analyzing ozone concentration by Bayesian spatio-temporal quantile regression[J]. Environmetrics, 2017, 28(4):e2443. DOI:10.1002/env.2443

[21]
He Q, Huang H H. A framework of zero-inflated Bayesian negative binomial regression models for spatiotemporal data[J]. Journal of Statistical Planning and Inference, 2024, 229:106098. DOI:10.1016/j.jspi.2023.106098

[22]
LeSage J P. Spatial econometric panel data model specification: A Bayesian approach[J]. Spatial Statistics, 2014, 9:122-145. DOI:10.1016/j.spasta.2014.02.002

[23]
Reich B J, Fuentes M, Dunson D B. Bayesian spatial quantile regression[J]. Journal of the American Statistical Association, 2011, 106(493):6-20. DOI:10.1198/jasa.2010.ap09237

PMID

[24]
Fernandez R C, Gonçalves K C M, de Morais Pereira J B. A flexible Bayesian hierarchical quantile spatial model for areal data[J]. Statistical Modelling, 2025, 25(1): 35-54. DOI:10.1177/1471082x231204930

[25]
Cai Z, Zhu Y, Han X. Bayesian analysis of spatial dynamic panel data model with convex combinations of different spatial weight matrices: A reparameterized approach[J]. Economics Letters, 2022, 217:110695. DOI:10.1016/j.econlet.2022.110695

[26]
范真, 王西贝. 空间权重选择的模拟研究——基于贝叶斯方法[J]. 统计与决策, 2024, 40(10):52-57.

[Fan Z, Wang X B. Simulation study on spatial weight—Based on Bayesian method[J]. Statistics & Decision, 2024, 40(10):52-57.] DOI:10.13546/j.cnki.tjyjc.2024.10.009

[27]
Ma Z, Huang Z. A Bayesian implementation of the multiscale geographically weighted regression model with INLA[J]. Annals of the American Association of Geographers, 2023, 113(6):1501-1515. DOI:10.1080/24694452.2023.2187756

[28]
Song C, Shi X, Bo Y, et al. Exploring spatiotemporal nonstationary effects of climate factors on hand, foot, and mouth disease using Bayesian Spatiotemporally Varying Coefficients (STVC) model in Sichuan, China[J]. Science of the Total Environment, 2019, 648:550-560. DOI:10.1016/j.scitotenv.2018.08.114

[29]
Song C, Shi X, Wang J. Spatiotemporally Varying Coefficients (STVC) model: A Bayesian local regression to detect spatial and temporal nonstationarity in variables relationships[J]. Annals of GIS, 2020, 26(3):277-291. DOI:10.1080/19475683.2020.1782467

[30]
Peruzzi M, Banerjee S, Finley A O. Highly scalable Bayesian geostatistical modeling via meshed Gaussian processes on partitioned domains[J]. Journal of the American Statistical Association, 2022, 117(538):969-982. DOI:10.1080/01621459.2020.1833889

PMID

[31]
Hahn P R, Murray J S, Carvalho C M. Bayesian regression tree models for causal inference: Regularization, confounding, and heterogeneous effects (with discussion)[J]. Bayesian Analysis, 2020, 15(3):965-1056. DOI:10.1214/19-BA1195

[32]
Krantsevich N, He J, Hahn PR. Stochastic tree ensembles for estimating heterogeneous effects[C]. International Conference on Artificial Intelligence and Statistics, pp. 6120-6131. PMLR, 2023. DOI:10.48550/arXiv.2209.06998

[33]
Hill J, Linero A, Murray J. Bayesian additive regression trees: A review and look forward[J]. Annual Review of Statistics and Its Application, 2020, 7:251-278. DOI:10.1146/annurev-statistics-031219-041110

[34]
李俊明, 魏雯琪, 张鹏, 等. 中国市域数字经济发展对减污降碳协同的促进效应及其空间分异[J]. 经济地理, 2023, 43(12):169-180.

DOI

[Li J M, Wei W Q, Zhang P, et al. The promoting effect of China’s city-level digital economy development on pollution reduction and carbon emission synergy and its spatial heterogeneity[J]. Economic Geography, 2023, 43(12):169-180. ] DOI:10.15957/j.cnki.jjdl.2023.12.017

[35]
He, Wenchong and Zhe Jiang. "Uncertainty Quantification of Deep Learning for Spatiotemporal Data: Challenges and Opportunities." arxiv preprint arxiv:2311.02485, 2023. DOI:10.48550/arXiv.2311.02485

[36]
Chandra R, He Y. Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic[J]. PLos one, 2021, 16(7):e0253217. DOI:10.1371/journal.pone.0253217

[37]
Hauzenberger N, Huber F, Klieber K, et al. Bayesian neural networks for macroeconomic analysis[J]. Journal of Econometrics, 2025, 249:105843. DOI:10.1016/j.jeconom.2024.105843

[38]
Hubin A, Storvik G. Sparse Bayesian neural networks: Bridging model and parameter uncertainty through scalable variational inference[J]. Mathematics, 2024, 12(6):788. DOI:10.3390/math12060788

[39]
Alexos A, Boyd AJ, Mandt S. Structured stochastic gradient MCMC[C]. Proceedings of the International Conference on Machine Learning, 2022:414-434. DOI:10.48550/arXiv.2107.09028

[40]
Saad F, Burnim J, Carroll C, et al. Scalable spatiotemporal prediction with Bayesian neural fields[J]. Nature Communications, 2024, 15:7942. DOI:10.1038/s41467-024-51477-5

PMID

[41]
Padrao P, Fuentes J, Bobadilla L, et al. Estimating spatio-temporal fields through reinforcement learning[J]. Frontiers in Robotics and AI, 2022, 9:878246. DOI:10.3389/frobt.2022.878246

[42]
Fu J, Zhou W, Chen Z. Bayesian spatio-temporal graph convolutional network for traffic forecasting[J]. arxiv preprint arxiv:2010.07498, 2020. DOI:10.48550/arXiv.2010.07498

[43]
Zeghina A, Leborgne A, Le Ber F, et al. Deep learning on spatiotemporal graphs: A systematic review, methodological landscape, and research opportunities[J]. Neurocomputing, 2024, 594:127861. DOI:10.1016/j.neucom.2024.127861

[44]
Li Y, Yu D, Liu Z, et al. Graph neural network for spatiotemporal data: Methods and applications[J]. arxiv preprint arxiv:2306.00012, 2023. DOI:10.48550/arXiv.2306.00012

[45]
Song Z, Jia X, Bao J, et al. Spatio-temporal analysis of influenza-like illness and prediction of incidence in high-risk regions in the United States from 2011 to 2020[J]. International Journal of Environmental Research and Public Health, 2021, 18(13):7120. DOI:10.3390/ijerph18137120

[46]
Amorós R, Conesa D, López-Quílez A, et al. A spatio-temporal hierarchical Markov switching model for the early detection of influenza outbreaks[J]. Stochastic Environmental Research and Risk Assessment, 2020, 34(2):275-292. DOI:10.1007/s00477-020-01773-5

[47]
Jia Y, Xu Q, Zhu Y, et al. Estimation of the relationship between meteorological factors and measles using spatiotemporal Bayesian model in Shandong Province, China[J]. BMC Public Health, 2023, 23(1):1422. DOI:10.1186/s12889-023-16350-y

PMID

[48]
Chen Z Y, Deng X Y, Zou Y, et al. A Spatio-temporal Bayesian model to estimate risk and influencing factors related to tuberculosis in Chongqing, China, 2014-2020[J]. Archives of Public Health, 2023, 81(1):42. DOI:10.1186/s13690-023-01044-z

[49]
Jaya I G N M, Folmer H. Bayesian spatiotemporal forecasting and mapping of COVID-19 risk with application to West Java Province, Indonesia[J]. Journal of Regional Science, 2021, 61(4):849-881. DOI:10.1111/jors.12533

PMID

[50]
Satorra P, Tebé C. Bayesian spatio-temporal analysis of the COVID-19 pandemic in Catalonia[J]. Scientific Reports, 2024, 14:4220. DOI:10.1038/s41598-024-53527-w

PMID

[51]
Saavedra P, Santana A, Bello L, et al. A Bayesian spatio-temporal analysis of mortality rates in Spain: Application to the COVID-19 2020 outbreak[J]. Population Health Metrics, 2021, 19(1):27. DOI:10.1186/s12963-021-00259-y

PMID

[52]
敖琳珺, 张昱勤, 许欢, 等. 评估气象对广东省登革热时空预测模型的贡献[J]. 现代预防医学, 2020, 47(16):2899-2903.

[ Ao L J, Zhang Y Q, Xu H, et al. Assessing the contribution of meteorology to the spatio-temporal prediction model of dengue in Guangdong Province[J]. Modern Preventive Medicine, 2020, 47(16):2899-2903.] DOI:10.20043/j.cnki.mpm.2020.16.005

[53]
Bukhari M H, Shad M Y, Nguyen U S, et al. A Bayesian spatiotemporal approach to modelling arboviral diseases in Mexico[J]. Transactions of The Royal Society of Tropical Medicine and Hygiene, 2023, 117(12):867-874. DOI:10.1093/trstmh/trad064

PMID

[54]
Rotejanaprasert C, Ekapirat N, Areechokchai D, et al. Bayesian spatiotemporal modeling with sliding windows to correct reporting delays for real-time dengue surveillance in Thailand[J]. International Journal of Health Geographics, 2020, 19: 1-13. DOI:10.1186/s12942-020-00199-0

[55]
张辉国, 岳铭, 胡锡健. 2018年新疆手足口病时空分布特征及气象因素相关性研究[J]. 病毒学报, 2022, 38(4):874-879.

[Zhang H G, Yue M, Hu X J. Study on the spatiotemporal distribution characteristics and correlation with meteorological factors of hand, foot, and mouth disease in Xinjiang in 2018[J]. Chinese Journal of Virology, 2022, 38(4): 874-879. ] DOI:10.13242/j.cnki.bingduxuebao.210286

[56]
陈思秇, 孙立梅, 马文军, 等. 基于贝叶斯时空模型广州市手足口病精细时空尺度下发病影响因素分析[J]. 中国公共卫生, 2020, 36(8):1171-1176.

[Chen S Y, Sun L M, Ma W J, et al. Analysis of influencing factors of hand, foot, and mouth disease incidence in Guangzhou at fine spatiotemporal scales based on Bayesian spatiotemporal model[J]. Chinese Journal of Public Health, 2020, 36(8):1171-1176. ] DOI:10.11847/zgggws1121488

[57]
He X, Dong S, Li L, et al. Using a Bayesian spatiotemporal model to identify the influencing factors and high-risk areas of hand, foot and mouth disease (HFMD) in Shenzhen[J]. PLOS Neglected Tropical Diseases, 2020, 14(3):e0008085. DOI:10.1371/journal.pntd.0008085

[58]
Semakula M, Niragire F, Faes C. Spatio-temporal Bayesian models for malaria risk using survey and health facility routine data in Rwanda[J]. International Journal of Environmental Research and Public Health, 2023, 20(5):4283. DOI:10.3390/ijerph20054283

[59]
Takramah W K, Afrane Y A, Aheto J M K. Bayesian spatiotemporal modelling and mapping of malaria risk among children under five years of age in Ghana[J]. BMC Infectious Diseases, 2025, 25(1):430. DOI:10.1186/s12879-025-10787-9

[60]
Mougeni F, Lell B, Kandala NB, et al. Bayesian spatio-temporal analysis of malaria prevalence in children between 2 and 10 years of age in Gabon[J]. Malaria Journal, 2024, 23:57. DOI:10.1186/s12936-024-04880-8

[61]
Rouamba T, Samadoulougou S, Tinto H, et al. Bayesian spatiotemporal modeling of routinely collected data to assess the effect of health programs in malaria incidence during pregnancy in Burkina Faso[J]. Scientific Reports, 2020, 10:2618. DOI:10.1038/s41598-020-58899-3

PMID

[62]
Semakula M, Niragire F, Faes C. Bayesian spatio-temporal modeling of malaria risk in Rwanda[J]. PLoS one, 2020, 15(9):e0238504. DOI:10.1371/journal.pone.0238504

[63]
Liu Y, Sun J, Gou Y, et al. Analysis of short-term effects of air pollution on cardiovascular disease using Bayesian spatio-temporal models[J]. International Journal of Environmental Research and Public Health, 2020, 17(3):879. DOI:10.3390/ijerph17030879

[64]
Zhang R, Lai K Y, Liu W, et al. Community-level ambient fine particulate matter and seasonal influenza among children in Guangzhou, China: A Bayesian spatiotemporal analysis[J]. Science of The Total Environment, 2022, 826:154135. DOI:10.1016/j.scitotenv.2022.154135

[65]
Ren Z, Wang S, Liu X, et al. Associations between gender gaps in life expectancy, air pollution, and urbanization: A global assessment with Bayesian spatiotemporal modeling[J]. International Journal of Public Health, 2023, 68:1605345. DOI:10.3389/ijph.2023.1605345

[66]
陈胜亮, 靳思慧, 赵冬宝. 广东省县域内住院率时空特征及其影响因素分析[J]. 中国医院管理, 2024, 44(1):23-27.

[Chen SL, Jin SH, Zhao DB. Analysis of spatiotemporal characteristics and influencing factors of hospitalization rates in counties of Guangdong Province[J]. Chinese Hospital Management, 2024, 44(1):23-27. ] DOI:CNKI:SUN:YYGL.0.2024-01-006

[67]
李俊明. 中国PM2.5污染时空趋势研究——基于贝叶斯时空统计视角[J]. 统计与信息论坛, 2019, 34(6):67-73.

[ Li JM. Study on the spatiotemporal trends of PM2.5 pollution in China — Based on the perspective of Bayesian spatiotemporal statistics[J]. Statistics & Information Forum, 2019, 34(6): 67-73. ] DOI:CNKI:SUN:TJLT.0.2019-06-011

[68]
Jin J-Q, Du Y, Xu L-J, et al. Using Bayesian spatio-temporal model to determine the socio-economic and meteorological factors influencing ambient PM2.5 levels in 109 Chinese cities[J]. Environmental Pollution, 2019, 254:113023. DOI:10.1016/j.envpol.2019.113023

[69]
Sarto SD, Ranalli MG, Bakar KS, et al. Bayesian spatiotemporal modeling of urban air pollution dynamics[C]. Topics on Methodological and Applied Statistical Inference, 2016:Springer. https://link.springer.com/chapter/10.1007/978-3-319-44093-4_10

[70]
Tan X, Gan T Y, Chen S, et al. Modeling distributional changes in winter precipitation of Canada using Bayesian spatiotemporal quantile regression subjected to different teleconnections[J]. Climate Dynamics, 2019, 52:2105-2124. DOI:10.1007/s00382-018-4241-0

[71]
梁中耀, 余艳红, 王丽婧, 等. 湖泊水质时空变化特征识别的贝叶斯方差分析方法[J]. 环境科学学报, 2017, 37(11):4170-4177.

[Liang Z Y, Yu Y H, Wang L J, et al. A Bayesian ANOVA method to identify the temporal and seasonal dynamics of lake water quality variables[J]. Acta Scientiae Circumstantiae, 2017, 37(11):4170-4177. ] DOI:10.13671/j.hjkxxb.2017.0276

[72]
于明雪, 孙建国, 杨维涛. 基于贝叶斯层次时空模型的甘肃省土地利用程度演变分析[J]. 地理科学, 2022, 42(5):918-925.

DOI

[Yu M X, Sun J G, Yang W T, et al. Evolution of land use degree in Gansu Province based on Bayesian hierarchical spatio-temporal model[J]. Scientia Geographica Sinica, 2022, 42(5):918-925.] DOI:10.13249/j.cnki.sgs.2022.05.017

[73]
吕建康, 孙建国, 谢甫. 贝叶斯层次时空模型在甘肃省AOD时空分布中的应用[J]. 无线电工程, 2023, 53(3):707-713.

[ Lyu J K, Sun J G, Xie F. Application of Bayesian hierarchical spatio-temporal model in spatio-temporal distribution of aerosol optical depth in Gansu Province[J]. Radio Engineering, 2023, 53(3):707-713. ]

[74]
李俊明. 基于Bayesian层次时空模型的我国老龄化分析与预测[J]. 统计研究, 2016, 33(8):89-94.

[ Li J M. Space-time variation of Chinese aging based on Bayesian hierarchy spatio-temporal model[J]. Statistical Research, 2016, 33(8):89-94. ] DOI:10.19343/j.cnki.11-1302/c.2016.08.011

[75]
Han X, Li J, Wang N. Spatiotemporal evolution of Chinese ageing from 1992 to 2015 based on an improved Bayesian space-time model[J]. BMC Public Health, 2018, 18:502. DOI:10.1186/s12889-018-5417-6

PMID

[76]
Liu D, Song W, Xiu C, et al. Understanding the spatiotemporal pattern of crimes in Changchun, China: A Bayesian modeling approach[J]. Sustainability, 2021, 13(19):10500. DOI:10.3390/su131910500

[77]
Law J., Quick M., Chan P.W. Analyzing hotspots of crime using a Bayesian spatiotemporal modeling approach: A case study of violent crime in the Greater Toronto Area[J]. Geographical Analysis, 2015, 47(1):1-19. DOI:10.1111/gean.12047

[78]
Zeng Q, Wen H, Huang H, et al. A Bayesian spatial random parameters Tobit model for analyzing crash rates on roadway segments[J]. Accident Analysis & Prevention, 2017, 100: 37-43. DOI:10.1016/j.aap.2016.12.023

[79]
Liu C, Sharma A. Using the multivariate spatio-temporal Bayesian model to analyze traffic crashes by severity[J]. Analytic Methods in Accident Research, 2018, 17:14-31. DOI:10.1016/j.amar.2018.02.001

[80]
韩晓, 魏楚, 吴施美. 中国农村居民生物质能消费估计[J]. 资源科学, 2023, 45(9):1817-1829.

DOI

[Han X, Wei C, Wu S M. Estimation of biomass energy consumption by rural residents in China[J]. Resources Science, 2023, 45(9):1817-1829. ] DOI:CNKI:SUN:ZRZY.0.2023-09-009

[81]
刘韵艺, 汤渊, 苏盛, 等. 基于STL-Bayesian时空模型的分布式光伏系统异常检测[J]. 中国电力, 2024, 57(5):222-231.

[Liu Y Y, Tang Y, Su S, et al. Anomaly detection in distributed photovoltaic systems based on STL-Bayesian spatiotemporal model[J]. China Electric Power, 2024, 57(5):222-231.] DOI:10.11930/j.issn.1004-9649.202305120

[82]
Yang HQ, Zhang L, Pan Q, et al. Bayesian estimation of spatially varying soil parameters with spatiotemporal monitoring data[J]. Acta Geotechnica, 2021, 16(1):263-278. DOI:10.1007/s11440-020-00991-z

[83]
Song J, Liu J, Zhang X, et al. Spatio-temporal fluctuation analysis of ecosystem service values in Northeast China over long time series: Based on Bayesian hierarchical modeling[J]. Land, 2024, 13(6):833. DOI:10.3390/land13060833

文章导航

/