从轨迹专门模型到轨迹基础模型:研究进展与展望
作者贡献:Author Contributions
刘康完成文献调研;刘康完成论文写作和修改。刘康阅读并同意最终稿件的提交。
The literature review was completed by LIU Kang. The manuscript was drafted and revised by LIU Kang. LIU Kang has read the last version of the paper and consented for submission.
刘康(1991—),女,山东临沂人,博士,副研究员,博士生导师,主要从事GeoAI与城市计算研究。E-mail: kang.liu@siat.ac.cn |
收稿日期: 2025-04-25
修回日期: 2025-06-27
网络出版日期: 2025-07-07
基金资助
国家自然科学基金项目(42271474)
广东省自然科学基金项目(2024A1515012020)
From Specialized Trajectory Models to Trajectory Foundation Models: Advancements and Prospects
Received date: 2025-04-25
Revised date: 2025-06-27
Online published: 2025-07-07
Supported by
National Natural Science Foundation of China(42271474)
Guangdong Basic and Applied Basic Research Foundation(2024A1515012020)
【意义】人类移动与交通、传染病、安全等密切相关,使得轨迹分析与建模成为持续的研究热点。目前,学界与业界已发展了大量以机器学习/深度学习为主流的轨迹专门模型,如轨迹插值模型、轨迹预测模型、轨迹分类模型等。然而,这些模型大多针对专门任务设计、基于局部区域数据训练,难以泛化应用于其他任务、其他区域乃至其他类型的轨迹。近年来,随着生成式人工智能发展,通用基础模型在自然语言处理、计算机视觉等领域得到显著应用。在这一技术发展趋势下,构建轨迹基础模型,使其学习到大规模轨迹数据的通用特征,以适用于不同区域与多种下游任务,成为轨迹建模的迫切需求。【方法】本文首先系统综述了各类轨迹专门模型的研究进展与发展脉络,然后将轨迹建模任务分为常规任务(轨迹相似性计算、插值、预测、分类等)与生成任务(轨迹生成),阐述了近年来面向这两类任务的轨迹基础模型前沿研究进展。【结论】本文认为,面向常规任务的轨迹基础模型除了具备任务泛化能力,还应进一步强化其空间泛化与数据泛化能力;面向生成任务的轨迹基础模型还需攻克空间泛化难题,能够基于易获取的目标城市宏观数据或特征,“从无到有”生成城市级大规模轨迹数据。此外,将轨迹数据与其他类型数据(如文本、地图、其他地理空间数据)联合构建多模态地理基础模型,以及构建面向交通管理、传染病传播、公安寻人等业务场景的轨迹基础模型,也是未来值得探讨的研究方向。
刘康 . 从轨迹专门模型到轨迹基础模型:研究进展与展望[J]. 地球信息科学学报, 2025 , 27(7) : 1520 -1531 . DOI: 10.12082/dqxxkx.2025.250196
[Significance] Human mobility is closely tied to transportation, infectious disease spread, and public safety, making trajectory analysis and modeling a long-standing research focus. While numerous specialized trajectory models, such as interpolation, prediction, and classification models, have been developed using machine learning or deep learning, most are task-specific and trained on localized datasets, limiting their generalizability across tasks, regions, or trajectory data. Recent advances in generative AI have demonstrated the potential of foundation models in NLP and computer vision, motivating the need for a trajectory foundation model capable of learning universal patterns from large-scale mobility data to support diverse downstream applications. [Methods] This paper first reviews the research progress of various specialized trajectory models. It then categorizes trajectory modeling tasks into conventional tasks (e.g., trajectory similarity computation, interpolation, prediction, and classification) and generation task (i.e., trajectory generation), and elaborates on recent advances in trajectory foundation models for these two types of tasks. [Conclusions] The paper argues that trajectory foundation models for conventional tasks should enhance not only task generalization but also spatial and data generalization. Trajectory foundation models for generation task must address the challenge of spatial generalization, enabling the generation of large-scale trajectory data "from scratch" based on easily obtainable macro-level urban data or features. Furthermore, integrating trajectory data with other data types (e.g., text, maps, and other geospatial data) to construct multimodal geographic foundation models, as well as developing application-oriented trajectory foundation models for fields such as transportation, public health, and public safety, are promising research directions worthy of future exploration.
利益冲突:Conflicts of Interest 所有作者声明不存在利益冲突。
All authors disclose no relevant conflicts of interest.
[1] |
李锐, 刘朝辉, 吴华意. 城市人口流动感知与建模方法综述[J]. 武汉大学学报(信息科学版), 2025, 50(5):973-995.
[
|
[2] |
方志祥. 公共卫生与安全应急视角下人群动态的观测思考与挑战[J]. 武汉大学学报(信息科学版), 2020, 45(12):1847-1856.
[
|
[3] |
关庆锋, 任书良, 姚尧, 等. 耦合手机信令数据和房价数据的城市不同经济水平人群行为活动模式研究[J]. 地球信息科学学报, 2020, 22(1):100-112.
[
|
[4] |
姚尧, 张亚涛, 关庆锋, 等. 使用时序出租车轨迹识别多层次城市功能结构[J]. 武汉大学学报(信息科学版), 2019, 44(6):875-884.
[
|
[5] |
牟乃夏, 张恒才, 陈洁, 等. 轨迹数据挖掘城市应用研究综述[J]. 地球信息科学学报, 2015, 17(10):1136-1142.
[
|
[6] |
唐炉亮, 阚子涵, 任畅, 等. 利用GPS轨迹的转向级交通拥堵精细分析[J]. 测绘学报, 2019, 48(1):75-85.
[
|
[7] |
裴韬, 王席, 宋辞, 等. COVID-19疫情时空分析与建模研究进展[J]. 地球信息科学学报, 2021, 23(2):188-210.
[
|
[8] |
尹凌, 刘康, 张浩, 等. 耦合人群移动的COVID-19传染病模型研究进展[J]. 地球信息科学学报, 2021, 23(11):1894-1909.
[
|
[9] |
|
[10] |
陆锋, 刘康, 陈洁. 大数据时代的人类移动性研究[J]. 地球信息科学学报, 2014, 16(5):665-672.
[
|
[11] |
刘瑜, 肖昱, 高松, 等. 基于位置感知设备的人类移动研究综述[J]. 地理与地理信息科学, 2011, 27(4):8-13.
[
|
[12] |
|
[13] |
|
[14] |
秦昆, 王玉龙, 赵鹏祥, 等. 行为轨迹时空聚类与分析[J]. 自然杂志, 2018, 40(3):177-182.
[
|
[15] |
刘康. 人类移动数据生成方法:研究进展与趋势探讨[J]. 地球信息科学学报, 2024, 26(4):831-847.
[
|
[16] |
周星星, 吉根林, 张书亮. 时空轨迹相似性度量方法综述[J]. 地理信息世界, 2018, 25(4):11-18.
[
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
吴晨昊, 向隆刚, 张叶廷, 等. 基于地理空间感知型表征学习的轨迹相似度计算[J]. 测绘学报, 2023, 52(4):670-678.
[
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
刘康, 段滢滢, 张恒才. 基于路网拓扑层次性表达的驾车路径规划方法[J]. 地球信息科学学报, 2015, 17(9):1039-1046.
[
|
/
〈 |
|
〉 |