地球信息科学理论与方法

从轨迹专门模型到轨迹基础模型:研究进展与展望

  • 刘康 , *
展开
  • 中国科学院深圳先进技术研究院,深圳,518055

作者贡献:Author Contributions

刘康完成文献调研;刘康完成论文写作和修改。刘康阅读并同意最终稿件的提交。

The literature review was completed by LIU Kang. The manuscript was drafted and revised by LIU Kang. LIU Kang has read the last version of the paper and consented for submission.

刘康(1991—),女,山东临沂人,博士,副研究员,博士生导师,主要从事GeoAI与城市计算研究。E-mail:

收稿日期: 2025-04-25

  修回日期: 2025-06-27

  网络出版日期: 2025-07-07

基金资助

国家自然科学基金项目(42271474)

广东省自然科学基金项目(2024A1515012020)

From Specialized Trajectory Models to Trajectory Foundation Models: Advancements and Prospects

  • LIU Kang , *
Expand
  • Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
*LIU Kang, E-mail:

Received date: 2025-04-25

  Revised date: 2025-06-27

  Online published: 2025-07-07

Supported by

National Natural Science Foundation of China(42271474)

Guangdong Basic and Applied Basic Research Foundation(2024A1515012020)

摘要

【意义】人类移动与交通、传染病、安全等密切相关,使得轨迹分析与建模成为持续的研究热点。目前,学界与业界已发展了大量以机器学习/深度学习为主流的轨迹专门模型,如轨迹插值模型、轨迹预测模型、轨迹分类模型等。然而,这些模型大多针对专门任务设计、基于局部区域数据训练,难以泛化应用于其他任务、其他区域乃至其他类型的轨迹。近年来,随着生成式人工智能发展,通用基础模型在自然语言处理、计算机视觉等领域得到显著应用。在这一技术发展趋势下,构建轨迹基础模型,使其学习到大规模轨迹数据的通用特征,以适用于不同区域与多种下游任务,成为轨迹建模的迫切需求。【方法】本文首先系统综述了各类轨迹专门模型的研究进展与发展脉络,然后将轨迹建模任务分为常规任务(轨迹相似性计算、插值、预测、分类等)与生成任务(轨迹生成),阐述了近年来面向这两类任务的轨迹基础模型前沿研究进展。【结论】本文认为,面向常规任务的轨迹基础模型除了具备任务泛化能力,还应进一步强化其空间泛化与数据泛化能力;面向生成任务的轨迹基础模型还需攻克空间泛化难题,能够基于易获取的目标城市宏观数据或特征,“从无到有”生成城市级大规模轨迹数据。此外,将轨迹数据与其他类型数据(如文本、地图、其他地理空间数据)联合构建多模态地理基础模型,以及构建面向交通管理、传染病传播、公安寻人等业务场景的轨迹基础模型,也是未来值得探讨的研究方向。

本文引用格式

刘康 . 从轨迹专门模型到轨迹基础模型:研究进展与展望[J]. 地球信息科学学报, 2025 , 27(7) : 1520 -1531 . DOI: 10.12082/dqxxkx.2025.250196

Abstract

[Significance] Human mobility is closely tied to transportation, infectious disease spread, and public safety, making trajectory analysis and modeling a long-standing research focus. While numerous specialized trajectory models, such as interpolation, prediction, and classification models, have been developed using machine learning or deep learning, most are task-specific and trained on localized datasets, limiting their generalizability across tasks, regions, or trajectory data. Recent advances in generative AI have demonstrated the potential of foundation models in NLP and computer vision, motivating the need for a trajectory foundation model capable of learning universal patterns from large-scale mobility data to support diverse downstream applications. [Methods] This paper first reviews the research progress of various specialized trajectory models. It then categorizes trajectory modeling tasks into conventional tasks (e.g., trajectory similarity computation, interpolation, prediction, and classification) and generation task (i.e., trajectory generation), and elaborates on recent advances in trajectory foundation models for these two types of tasks. [Conclusions] The paper argues that trajectory foundation models for conventional tasks should enhance not only task generalization but also spatial and data generalization. Trajectory foundation models for generation task must address the challenge of spatial generalization, enabling the generation of large-scale trajectory data "from scratch" based on easily obtainable macro-level urban data or features. Furthermore, integrating trajectory data with other data types (e.g., text, maps, and other geospatial data) to construct multimodal geographic foundation models, as well as developing application-oriented trajectory foundation models for fields such as transportation, public health, and public safety, are promising research directions worthy of future exploration.

利益冲突:Conflicts of Interest 所有作者声明不存在利益冲突。

All authors disclose no relevant conflicts of interest.

[1]
李锐, 刘朝辉, 吴华意. 城市人口流动感知与建模方法综述[J]. 武汉大学学报(信息科学版), 2025, 50(5):973-995.

[Li R, Liu Z H, Wu H Y. A review of urban population mobility perception and modeling methods[J]. Geomatics and Information Science of Wuhan University, 2025, 50(5):973-995. ] DOI:10.13203/j.whugis20240082

[2]
方志祥. 公共卫生与安全应急视角下人群动态的观测思考与挑战[J]. 武汉大学学报(信息科学版), 2020, 45(12):1847-1856.

[Fang Z X. Thinking and challenges of crowd dynamics observation from the perspectives of public health and public security[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12):1847-1856. ] DOI:10.13203/j.whugis20200422

[3]
关庆锋, 任书良, 姚尧, 等. 耦合手机信令数据和房价数据的城市不同经济水平人群行为活动模式研究[J]. 地球信息科学学报, 2020, 22(1):100-112.

DOI

[Guan Q F, Ren S L, Yao Y, et al. Revealing the behavioral patterns of different socioeconomic groups in cities with mobile phone data and house price data[J]. Journal of Geo-Information Science, 2020, 22(1):100-112. ] DOI:10.12082/dqxxkx.2020.190406

[4]
姚尧, 张亚涛, 关庆锋, 等. 使用时序出租车轨迹识别多层次城市功能结构[J]. 武汉大学学报(信息科学版), 2019, 44(6):875-884.

[Yao Y, Zhang Y T, Guan Q F, et al. Sensing multi-level urban functional structures by using time series taxi trajectory data[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6):875-884. ] DOI:10.13203/j.whugis20170111

[5]
牟乃夏, 张恒才, 陈洁, 等. 轨迹数据挖掘城市应用研究综述[J]. 地球信息科学学报, 2015, 17(10):1136-1142.

DOI

[Mou N X, Zhang H C, Chen J, et al. A review on the application research of trajectory data mining in urban cities[J]. Journal of Geo-Information Science, 2015, 17(10):1136-1142. ] DOI:10.3724/SP.J.1047.2015.01136

[6]
唐炉亮, 阚子涵, 任畅, 等. 利用GPS轨迹的转向级交通拥堵精细分析[J]. 测绘学报, 2019, 48(1):75-85.

DOI

[Tang L L, Kan Z H, Ren C, et al. Fine-grained analysis of traffic congestions at the turning level using GPS traces[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):75-85. ] DOI:10.11947/j.AGCS.2019.20170448

[7]
裴韬, 王席, 宋辞, 等. COVID-19疫情时空分析与建模研究进展[J]. 地球信息科学学报, 2021, 23(2):188-210.

DOI

[Pei T, Wang X, Song C, et al. Review on spatiotemporal analysis and modeling of COVID-19 pandemic[J]. Journal of Geo-Information Science, 2021, 23(2):188-210. ] DOI:10.12082/dqxxkx.2021.200434

[8]
尹凌, 刘康, 张浩, 等. 耦合人群移动的COVID-19传染病模型研究进展[J]. 地球信息科学学报, 2021, 23(11):1894-1909.

DOI

[Yin L, Liu K, Zhang H, et al. Integrating human mobility into the epidemiological models of COVID-19: Progress and challenges[J]. Journal of Geo-Information Science, 2021, 23(11):1894-1909. ] DOI:10.12082/dqxxkx.2021.210091

[9]
Yabe T, Luca M, Tsubouchi K, et al. Enhancing human mobility research with open and standardized datasets[J]. Nature Computational Science, 2024, 4(7):469-472. DOI:10.1038/s43588-024-00650-3

PMID

[10]
陆锋, 刘康, 陈洁. 大数据时代的人类移动性研究[J]. 地球信息科学学报, 2014, 16(5):665-672.

DOI

[Lu F, Liu K, Chen J. Research on human mobility in big data era[J]. Journal of Geo-Information Science, 2014, 16(5):665-672. ] DOI:10.3724/SP.J.1047.2014.00665

[11]
刘瑜, 肖昱, 高松, 等. 基于位置感知设备的人类移动研究综述[J]. 地理与地理信息科学, 2011, 27(4):8-13.

[Liu Y, Xiao Y, Gao S, et al. A review of human mobility research based on location aware devices[J]. Geography and Geo-Information Science, 2011, 27(4):8-13. ] DOI:CNKI:SUN:DLGT.0.2011-04-003

[12]
Chen W, Liang Y X, Zhu Y S, et al. Deep learning for trajectory data management and mining: A survey and beyond[EB/OL]. 2024:2403.14151. https://arxiv.org/abs/2403.14151

[13]
Luca M, Barlacchi G, Lepri B, et al. A survey on deep learning for human mobility[J]. ACM Computing Surveys, 2023, 55(1):1-44. DOI:10.1145/3485125

[14]
秦昆, 王玉龙, 赵鹏祥, 等. 行为轨迹时空聚类与分析[J]. 自然杂志, 2018, 40(3):177-182.

DOI

[Qin K, Wang Y L, Zhao P X, et al. Spatiotemporal clustering and analysis of behavior trajectory[J]. Chinese Journal of Nature, 2018, 40(3):177-182. ] DOI:10.3969/j.issn.0253-9608.2018.03.003

[15]
刘康. 人类移动数据生成方法:研究进展与趋势探讨[J]. 地球信息科学学报, 2024, 26(4):831-847.

DOI

[Liu K. Approaches for human mobility data generation: Research progress and trends[J]. Journal of Geo-Information Science, 2024, 26(4):831-847. ] DOI:10.12082/dqxxkx.2024.230488

[16]
周星星, 吉根林, 张书亮. 时空轨迹相似性度量方法综述[J]. 地理信息世界, 2018, 25(4):11-18.

[Zhou X X, Ji G L, Zhang S L. Overview of the similarity measurement methods for spatial-temporal trajectory[J]. Geomatics World, 2018, 25(4):11-18. ] DOI:10.3969/j.issn.1672-1586.2018.04.003

[17]
Agrawal R, Imieliński T, Swami A. Mining association rules between sets of items in large data-bases[C]// Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. ACM, 1993:207-216. DOI:10.1145/170035.170072

[18]
Keogh E J, Pazzani M J. Scaling up dynamic time warping for datamining applications[C]// Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2000:285-289. DOI:10.1145/347090.347153

[19]
Chen L, Ng R. On the marriage of Lp-norms and edit distance[C]// Proceedings of the Thirtieth Inter-national Conference on Very Large Data Bases. Amsterdam: Elsevier, 2004:792-803. DOI:10.1016/b978-012088469-8.50070-x

[20]
Chen L, Özsu M T, Oria V. Robust and fast similarity search for moving object trajectories[C]// Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. ACM, 2005:491-502. DOI:10.1145/1066157.1066213

[21]
Vlachos M, Kollios G, Gunopulos D. Discovering similar multidimensional trajectories[C]// Proceedings 18th International Conference on Data Engineering. IEEE, 2002:673-684. DOI:10.1109/ICDE.2002.994784

[22]
吴晨昊, 向隆刚, 张叶廷, 等. 基于地理空间感知型表征学习的轨迹相似度计算[J]. 测绘学报, 2023, 52(4):670-678.

DOI

[Wu C H, Xiang L G, Zhang Y T, et al. Geography-aware representation learning for trajectory similarity computation[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4):670-678. ] DOI:10.11947/j.AGCS.2023.20220026

[23]
Zhang H Y, Zhang X Y, Jiang Q Z, et al. Trajectory similarity learning with auxiliary supervision and optimal matching[C]// Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. ACM, 2020:3209-3215. DOI:10.24963/ijcai.2020/444

[24]
Yang P L, Wang H C, Zhang Y, et al. T3S: Effective representation learning for trajectory similarity computation[C]//2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 2021:2183-2188. DOI:10.1109/icde51399.2021.00221

[25]
Yang P L, Wang H C, Lian D F, et al. TMN: Trajectory matching networks for predicting similarity[C]// 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE, 2022:1700-1713. DOI:10.1109/ICDE53745.2022.00173

[26]
Yang C, Jiang R H, Xu X H, et al. SIMformer: Single-layer vanilla Transformer can learn free-space trajectory similarity[C]// Proceedings of the VLDB Endowment, 2024, 18(2):390-398. DOI:10.14778/3705829.3705853

[27]
Wang J Y, Wu N, Lu X X, et al. Deep trajectory recovery with fine-grained calibration using Kalman filter[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(3):921-934. DOI:10.1109/TKDE.2019.2940950

[28]
Xia T, Qi Y H, Feng J, et al. AttnMove: History enhanced trajectory recovery via attentional net-work[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5):4494-4502. DOI:10.1609/aaai.v35i5.16577

[29]
Ren H M, Ruan S J, Li Y H, et al. MTrajRec: Map-constrained trajectory recovery via Seq2Seq multitask learning[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. ACM, 2021:1410-1419. DOI:10.1145/3447548.3467238

[30]
Si J J, Yang J, Xiang Y, et al. TrajBERT: BERT-based trajectory recovery with spatial-temporal refinement for implicit sparse trajectories[J]. IEEE Transactions on Mobile Computing, 2024, 23(5):4849-4860. DOI:10.1109/TMC.2023.3297115

[31]
Deng L W, Zhao Y, Sun H, et al. Fusing local and global mobility patterns for trajectory recovery[C]// International Conference on Database Systems for Advanced Applications. Cham: Springer Nature Switzerland, 2023:448-463. DOI:10.1007/978-3-031-30637-2_29

[32]
Chen M, Liu Y, Yu X H. NLPMM: A next location predictor with Markov modeling[C]// Advances in Knowledge Discovery and Data Mining. Cham: Springer, 2014:186-197. DOI:10.1007/978-3-319-06605-9_16

[33]
Baraglia R, Muntean C I, Nardini F M, et al. LearNext: Learning to predict tourists movements[C]// Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. ACM, 2013:751-756. DOI:10.1145/2505515.2505656

[34]
Feng J, Li Y, Zhang H C, et al. DeepMove: Predicting human mobility with attentional recurrent networks[C]// Proceedings of the 2018 World Wide Web Conference. ACM, 2018:1459-1468. DOI:10.1145/3178876.3186058

[35]
Li M X, Lu F, Zhang H C, et al. Predicting future locations of moving objects with deep fuzzy-LSTM networks[J]. Transportmetrica A: Transport Science, 2020, 16(1):119-136. DOI:10.1080/23249935.2018.1552334

[36]
Xue H, Salim F, Ren Y, et al. MobTCast: Leveraging auxiliary trajectory forecasting for human mobility prediction[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. ACM, 2021:2324.

[37]
Yao Y, Guo Z J, Dou C, et al. Predicting mobile users' next location using the semantically enriched geo-embedding model and the multilayer attention mechanism[J]. Computers, Environment and Urban Systems, 2023, 104:102009. DOI:10.1016/j.compenvurbsys.2023.102009

[38]
Zhang X T, Gui Z P, Liu Y H, et al. Individual mobility prediction by considering current traveling features and historical activity chain[J]. Geo-spatial Information Science, 2025:1-28. DOI:10.1080/10095020.2025.2455005

[39]
Zheng Y, Liu L K, Wang L H, et al. Learning transportation mode from raw GPS data for geographic applications on the web[C]// Proceedings of the 17th International Conference on World Wide Web. ACM, 2008:247-256. DOI:10.1145/1367497.1367532

[40]
Dodge S, Weibel R, Forootan E. Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects[J]. Computers, Environment and Urban Systems, 2009, 33(6):419-434. DOI:10.1016/j.compenvurbsys.2009.07.008

[41]
Kontopoulos I, Makris A, Tserpes K, et al. TraClets: Harnessing the power of computer vision for trajectory classification[EB/OL]. 2022:2205.13880. https://arxiv.org/abs/2205.13880

[42]
Liang Y X, Ouyang K, Wang Y W, et al. TrajFormer: Efficient trajectory classification with transformers[C]// Proceedings of the 31st ACM International Conference on Information & Knowledge Management. ACM, 2022:1229-1237. DOI:10.1145/3511808.3557481

[43]
Savage N. Synthetic data could be better than real data[J]. Nature, 2023:CM25284852. DOI:10.1038/d41586-023-01445-8

[44]
Brockmann D, Hufnagel L, Geisel T. The scaling laws of human travel[J]. Nature, 2006, 439(7075):462-465. DOI:10.1038/nature04292

[45]
Song C M, Koren T, Wang P, et al. Modelling the scaling properties of human mobility[J]. Nature Physics, 2010, 6(10):818-823. DOI:10.1038/nphys1760

[46]
González M C, Hidalgo C A, Barabási A L. Understanding individual human mobility patterns[J]. Na-ture, 2008, 453(7196):779-782. DOI:10.1038/nature06958

[47]
Barbosa H, de Lima-Neto F B, Evsukoff A, et al. The effect of recency to human mobility[J]. EPJ Data Science, 2015, 4(1):21. DOI:10.1140/epjds/s13688-015-0059-8

[48]
Alessandretti L, Sapiezynski P, Sekara V, et al. Evidence for a conserved quantity in human mobility[J]. Nature Human Behaviour, 2018, 2(7):485-491. DOI:10.1038/s41562-018-0364-x

PMID

[49]
Schläpfer M, Dong L, O’Keeffe K, et al. The universal visitation law of human mobility[J]. Nature, 2021, 593(7860):522-527. DOI:10.1038/s41586-021-03480-9

[50]
Wang J Y, Dong L, Cheng X M, et al. An extended exploration and preferential return model for human mobility simulation at individual and collective levels[J]. Physica A: Statistical Mechanics and Its Ap-plications, 2019, 534:121921. DOI:10.1016/j.physa.2019.121921

[51]
Jin X, Liu K, Cao Z C, et al. Urban-EPR: A universal model for simulating individual human mobility within intra-urban areas[J]. International Journal of Geographical Information Science, 2025:1-34. DOI:10.1080/13658816.2025.2456558

[52]
Song X, Kanasugi H, Shibasaki R. DeepTransport: Prediction and simulation of human mobility and transportation mode at a citywide level[C]// Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. ACM, 2016:2618-2624. DOI:10.5555/3060832.3060987

[53]
Huang D, Song X, Fan Z P, et al. A variational autoencoder based generative model of urban human mobility[C]// 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE, 2019:425-430. DOI:10.1109/mipr.2019.00086

[54]
Cao Z C, Liu K, Jin X, et al. STAGE: A spatiotemporal-knowledge enhanced multi-task generative adversarial network (GAN) for trajectory generation[J]. International Journal of Geographical Information Science, 2025, 39(5):1100-1127. DOI:10.1080/13658816.2024.2381146

[55]
Zhu Y S, Ye Y C, Zhang S Y, et al. DiffTraj: Generating GPS trajectory with diffusion probabilistic model[C]// Proceedings of the 37th International Conference on Neural Information Processing System. ACM, 2023, 36:65168-65188. DOI:10.5555/3666122.3668965

[56]
Chu C, Zhang H C, Wang P X, et al. Simulating human mobility with a trajectory generation framework based on diffusion model[J]. International Journal of Geographical Information Science, 2024, 38(5):847-878. DOI:10.1080/13658816.2024.2312199

[57]
Liu K, Jin X, Cheng S F, et al. Act2Loc: A synthetic trajectory generation method by combining ma-chine learning and mechanistic models[J]. International Journal of Geographical Information Science, 2024, 38(3):407-431. DOI:10.1080/13658816.2023.2292570

[58]
Yao D, Hu H N, Du L, et al. TrajGAT: A graph-based long-term dependency modeling approach for trajectory similarity computation[C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM, 2022:2275-2285. DOI:10.1145/3534678.3539358

[59]
Li X C, Zhao K Q, Cong G, et al. Deep representation learning for trajectory similarity computation[C]// 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE, 2018:617-628. DOI:10.1109/ICDE.2018.00062

[60]
Lin Y, Wan H Y, Guo S N, et al. Pre-training general trajectory embeddings with maximum multi-view entropy coding[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 36(12):9037-9050. DOI:10.1109/TKDE.2023.3347513

[61]
Fu T Y, Lee W C. Trembr: Exploring road networks for trajectory representation learning[J]. ACM Transactions on Intelligent Systems and Technology, 2020, 11(1):1-25. DOI:10.1145/3361741

[62]
Chen Y L, Li X C, Cong G, et al. Robust road network representation learning: When traffic patterns meet traveling semantics[C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. ACM, 2021:211-220. DOI:10.1145/3459637.3482293

[63]
Jiang J W, Pan D Y, Ren H X, et al. Self-supervised trajectory representation learning with temporal regularities and travel semantics[C]// 2023 IEEE 39th International Conference on Data Engineering (ICDE). IEEE, 2023:843-855. DOI:10.1109/ICDE55515.2023.00070

[64]
Ma Z P, Tu Z Y, Chen X H, et al. More than routing: Joint GPS and route modeling for refine trajectory representation learning[C]// Proceedings of the ACM Web Conference 2024. ACM, 2024:3064-3075. DOI:10.1145/3589334.3645644

[65]
Yan B Q, Zhao G, Song L X, et al. PreCLN: Pretrained-based contrastive learning network for vehicle trajectory prediction[J]. World Wide Web, 2023, 26(4):1853-1875. DOI:10.1007/s11280-022-01121-3

[66]
Chang Y C, Qi J Z, Liang Y X, et al. Contrastive trajectory similarity learning with dual-feature attention[C]// 2023 IEEE 39th International Conference on Data Engineering (ICDE). IEEE, 2023:2933-2945. DOI:10.1109/ICDE55515.2023.00224

[67]
Li S Z, Chen W, Yan B Q, et al. Self-supervised contrastive representation learning for large-scale trajectories[J]. Future Generation Computer Systems, 2023, 148:357-366. DOI:10.1016/j.future.2023.05.033

[68]
Li P B, Yan H W, Lu X M. A Siamese neural network for learning the similarity metrics of linear features[J]. International Journal of Geographical Information Science, 2023, 37(3):684-711. DOI:10.1080/13658816.2022.2143505

[69]
Musleh M, Mokbel M F, Abbar S. Let’s speak trajectories[C]// Proceedings of the 30th International Conference on Advances in Geographic Information Systems. ACM, 2022:37. DOI:10.1145/3557915.3560972

[70]
Musleh M. Towards a unified deep model for trajectory analysis[C]// Proceedings of the 30th International Conference on Advances in Geographic Information Systems. 2022:109. DOI:10.1145/3557915.3565529

[71]
Najjar A. Towards a foundation model for trajectory intelligence[C]// 2023 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2023:832-835. DOI:10.1109/ICDMW60847.2023.00112

[72]
Lin Y, Wei T L, Zhou Z Y, et al. TrajFM: A vehicle trajectory foundation model for region and task transferability[EB/OL]. 2024:2408.15251. https://arxiv.org/abs/2408.15251

[73]
Zhu Y S, Yu J Q, Zhao X Y, et al. UniTraj: Universal Human Trajectory Modeling from Billion-Scale Worldwide Traces[EB/OL]. 2024:2411.03859. https://arxiv.org/abs/2411.03859

[74]
Mizuno T, Fujimoto S, Ishikawa A. Generation of individual daily trajectories by GPT-2[J]. Frontiers in Physics, 2022, 10:1021176. DOI:10.3389/fphy.2022.1021176

[75]
Horikomi T, Fujimoto S, Ishikawa A, et al. Generating individual trajectories using GPT-2 trained from scratch on encoded spatiotemporal data[EB/OL]. 2023:2308.07940. https://arxiv.org/abs/2308.07940

[76]
Zhu Y S, Yu J J, Zhao X Y, et al. ControlTraj: Controllable trajectory generation with topology-constrained diffusion model[C]// Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM, 2024:4676-4687. DOI:10.1145/3637528.3671866

[77]
Wang J Y, Lin Y J, Li Y D. GTG: Generalizable trajectory generation model for urban mobility[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2025, 39(1):834-842. DOI:10.1609/aaai.v39i1.32067

[78]
刘康, 段滢滢, 张恒才. 基于路网拓扑层次性表达的驾车路径规划方法[J]. 地球信息科学学报, 2015, 17(9):1039-1046.

DOI

[ Liu K, Duan Y Y, Zhang H C. A driving route planning method based on road network topological hierarchy expression[J]. Journal of Geo-Information Science, 2015, 17(9):1039-1046.] DOI:10.3724/SP.J.1047.2015.01039

文章导航

/