地球信息科学理论与方法

基于多源时空数据的城市公交站点地理空间优化方法:冗余优化模型

  • 李霄 , 1, 3, 4, 5 ,
  • 王少华 , 1, 2, * ,
  • 梁浩健 1, 2 ,
  • 周亮 3, 4, 5 ,
  • 刘畅 1, 2 ,
  • 王润桥 3, 4, 5 ,
  • 苏澄 1, 2
展开
  • 1.中国科学院空天信息创新研究院 遥感与数字地球全国重点实验室,北京 100101
  • 2.中国科学院大学,北京 101408
  • 3.兰州交通大学测绘与地理信息学院,兰州 730070
  • 4.地理国情监测技术应用国家地方联合工程研究中心,兰州 730070
  • 5.甘肃省测绘科学与技术重点实验室,兰州730070
*王少华(1983— ),男,陕西宝鸡人,博士,研究员,主要从事时空大数据分析、遥感智能计算、地理空间智能和地理空间优化研究。E-mail:

作者贡献:Author Contributions

李霄、王少华、梁浩健参与方法和实验设计;王少华、周亮提供实验数据;刘畅、王润桥、苏澄完成实验操作;李霄、王少华、梁浩健参与论文的写作和修改。所有作者均阅读并同意最终稿件的提交。

The study was designed by LI Xiao, WANG Shaohua, and LIANG Haojian. The experimental operation was completed by WANG Shaohua and ZHOU Liang. The experimental operation was completed by LIU Chang, WANG Runqiao, and SU Cheng. The manuscript was drafted and revised by LI Xiao, WANG Shaohua, and LIANG Haojian. All the authors have read the last version of paper and consented for submission.

李 霄(1999— ),男,四川广安人,硕士生,主要从地理空间优化研究。E-mail:

收稿日期: 2025-03-27

  修回日期: 2025-04-08

  网络出版日期: 2025-07-23

基金资助

国家重点研发计划项目(2023YFF0805904)

国家自然科学基金项目(42471495)

Geospatial Optimization of Urban Bus Stops Based on Multi-Source Spatio-temporal Data: A Redundancy Optimization Model

  • LI Xiao , 1, 3, 4, 5 ,
  • WANG Shaohua , 1, 2, * ,
  • LIANG Haojian 1, 2 ,
  • ZHOU Liang 3, 4, 5 ,
  • LIU Chang 1, 2 ,
  • WANG Runqiao 3, 4, 5 ,
  • SU Cheng 1, 2
Expand
  • 1. State Key Laboratory of Remote Sensing and Digital Earth, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
  • 2. University of Chinese Academy of Sciences, Beijing 101408, China
  • 3. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
  • 4. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
  • 5. Key Laboratory of Science and Technology in Surveying & Mapping Gansu Province, Lanzhou 730070, China
*WANG Shaohua, E-mail:

Received date: 2025-03-27

  Revised date: 2025-04-08

  Online published: 2025-07-23

Supported by

National Key Research and Development Program of China(2023YFF0805904)

National Natural Science Foundation of China(42471495)

摘要

【目的】可持续发展是全球各国发展的核心议题,涵盖了可持续的交通体系、包容和可持续的城市化等重要内容。作为城市公共服务设施的重要组成部分,公交网络是城市稳定运行的基石,其站点与线路的分布直接影响居民的出行方式。现有研究多聚焦于公交站点与线路的可达性分析、选址优化以及与人口、土地利用等因素的空间耦合关系,但在面对城市空间异质性和设施冗余问题时,仍存在优化深度不足、影响机制不清等问题。【方法】本文以北京市为例,重点关注北京东城区、西城区,本研究基于公交网络、地形、经济等多源数据,构建影响因素体系,并采用XGBoost机器学习方法,揭示驱动因子对公交站点分布的影响权重。在此基础上,提出了考虑站点冗余的数学模型,优化上下行站点的空间布局,绘制北京市公交站点空间优化布局图。【结果】研究结果表明: ① 北京市公交设施分布存在不均衡现象,中心城区与边缘区域在便捷公共交通可达人口比例上相差超过30%; ② 在19类影响因素中,人口密度为核心驱动因子,占比27.77%,风景名胜数量和停车场数量的影响较小,特征重要性不足0.5%; ③ 与p-中值模型相比,所提出的冗余优化模型显著减少了优化后站点的冗余程度,同时兼顾了加权距离最小化的性能,优化后的站点布局沿着原有公交线路分布且更加均匀。【结论】该研究结果可以为公交站点及其他公共服务设施布局提供一定的参考与理论支撑,有助于提升公共资源利用效率,促进城市可持续发展。

本文引用格式

李霄 , 王少华 , 梁浩健 , 周亮 , 刘畅 , 王润桥 , 苏澄 . 基于多源时空数据的城市公交站点地理空间优化方法:冗余优化模型[J]. 地球信息科学学报, 2025 , 27(8) : 1822 -1840 . DOI: 10.12082/dqxxkx.2025.250144

Abstract

[Objectives] Sustainable development is an important issue for countries worldwide, encompassing key aspects such as sustainable transportation systems and inclusive, sustainable urbanization. As a crucial component of urban public service infrastructure, the public transportation network serves as a cornerstone of a city's stable operation, with the distribution of its stops and routes directly influencing residents' travel patterns. However, existing studies mainly focus on accessibility analysis, site selection optimization, and spatial coupling with factors such as population and land use, while lacking in-depth optimization approaches and clear mechanisms that address spatial heterogeneity and facility redundancy. [Methods] Taking Beijing as a case study, with a focus on Dongcheng and Xicheng Districts, this study constructs a system of influencing factors based on multi-source data, including public transportation networks, topography, and economic indicators, and employs the XGBoost machine learning method to reveal the impact weights of these driving factors on the distribution of bus stops. On this basis, a mathematical model incorporating stop redundancy is proposed to optimize the spatial layout of upstream and downstream stops, producing a spatial optimization map of bus stops in Beijing. [Results] The findings indicate that: (1) There is an imbalance in the distribution of public transportation facilities in Beijing, with the proportion of the population having convenient access to public transportation differing by more than 30% between central and peripheral urban areas. (2) Among the 19 influencing factors, population density is the key driving factor, accounting for 27.77%, while the number of scenic spots and parking facilities have minimal impact, with feature importance scores below 0.5%. (3) Compared to the p-median model, the proposed redundancy optimization model significantly reduces the redundancy of optimized stops while maintaining performance in minimizing weighted distance. The optimized stop layout is more evenly distributed along existing bus routes. [Conclusions] These findings provide valuable reference and theoretical support for the layout of bus stops and other public service facilities, contributing to the efficient utilization of public resources and promoting sustainable urban development.

利益冲突:Conflicts of Interest 所有作者声明不存在利益冲突。

All authors disclose no relevant conflicts of interest.

[1]
Schmidt-Traub G, Kroll C, Teksoz K, et al. National baselines for the sustainable development goals assessed in the SDG index and dashboards[J]. Nature Geoscience, 2017, 10(8):547-555. DOI:10.1038/ngeo2985

[2]
Ercan T, Onat N C, Tatari O. Investigating carbon footprint reduction potential of public transportation in United States: A system dynamics approach[J]. Journal of Cleaner Production, 2016, 133:1260-1276. DOI:10.1016/j.jclepro.2016.06.051

[3]
Almulhim A I, Sharifi A, Aina Y A, et al. Charting sustainable urban development through a systematic review of SDG11 research[J]. Nature Cities, 2024, 1(10):677-685. DOI:10.1038/s44284-024-00117-6

[4]
戢晓峰, 欧思嘉, 陈方, 等. 快速城市化地区公共交通的空间剥夺特征研究[J]. 交通运输系统工程与信息, 2015, 15(6):33-38.

[Ji X F, Ou S J, Chen F, et al. Spatial deprivation characteristics of public transportation in rapid urbanization area[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(6):33-38.] DOI:10.16097/j.cnki.1009-6744.2015.06.006

[5]
姜栋, 赵文吉, 王艳慧, 等. 地理加权回归的城市道路时空运行态势空间网格计算方法[J]. 武汉大学学报(信息科学版), 2023, 48(6):988-996.

[Jiang D, Zhao W J, Wang Y H, et al. Analysis of urban road spatiotemporal situation by geographically weighted regression with spatial grid computing method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6):988-996. ] DOI: 10.13203/j.whugis20210173

[6]
焦利民, 刘耀林. 可持续城市化与国土空间优化[J]. 武汉大学学报(信息科学版), 2021, 46(1):1-11.

[Jiao L M, Liu Y L. Sustainable urbanization and territorial spatial optimization[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1):1-11. ] DOI:10.13203/j.whugis20200365

[7]
Gao B B, Yang J Y, Chen Z Y, et al. Causal inference from cross-sectional earth system data with geographical convergent cross mapping[J]. Nature Communications, 2023, 14:5875. DOI:10.1038/s41467-023-41619-6

PMID

[8]
Zhang C X, Lin H, Chen M, et al. A modelling system with adjustable emission inventories for cross-boundary air quality management in Hong Kong and the Pearl River Delta, China[J]. Computers, Environment and Urban Systems, 2017, 62:222-232. DOI:10.1016/j.compenvurbsys.2016.12.004

[9]
钟耳顺. 深度地图——论地图学与神经科学的结合[J]. 武汉大学学报(信息科学版), 2022, 47(12):1988-2002.

[Zhong E S. Deep mapping—a critical engagement of cartography with neuroscience[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12):1988-2002. ] DOI:10.13203/j.whugis20220382

[10]
AlRukaibi F, AlKheder S. Optimization of bus stop stations in Kuwait[J]. Sustainable Cities and Society, 2019, 44:726-738. DOI:10.1016/j.scs.2018.10.037

[11]
Zhao P J, Wang H, Liu Q Y, et al. Unravelling the spatial directionality of urban mobility[J]. Nature Communications, 2024, 15:4507. DOI:10.1038/s41467-024-48909-7

PMID

[12]
Háznagy A, Fi I, London A, et al. Complex network analysis of public transportation networks: A comprehensive study[C]// 2015 International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). IEEE, 2015:371-378.

[13]
De Bona A A, Fonseca K V O, Rosa M O, et al. Analysis of public bus transportation of a Brazilian City based on the theory of complex networks using the P-space[J]. Mathematical Problems in Engineering, 2016, 2016(1): 3898762. DOI:10.1155/2016/3898762

[14]
Ma F, Ren F X, Yuen K F, et al. The spatial coupling effect between urban public transport and commercial complexes: A network centrality perspective[J]. Sustainable Cities and Society, 2019, 50:101645. DOI:10.1016/j.scs.2019.101645

[15]
Wei S, Zheng W, Wang L. Understanding the configuration of bus networks in urban China from the perspective of network types and administrative division effect[J]. Transport Policy, 2021, 104:1-17. DOI:10.1016/j.tranpol.2021.02.002

[16]
Zeng W, Fu C W, Arisona S M, et al. Visualizing mobility of public transportation system[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12):1833-1842. DOI:10.1109/TVCG.2014.2346893

[17]
Liu C, Bardaka E. The suburbanization of poverty and changes in access to public transportation in the Triangle Region, NC[J]. Journal of Transport Geography, 2021, 90:102930. DOI:10.1016/j.jtrangeo.2020.102930

[18]
樊文平, 张静, 王建华, 等. 句法视角下山东省三大经济圈交通网络格局及优化[J]. 地理与地理信息科学, 2023, 39(1):55-61.

[Fan W P, Zhang J, Wang J H, et al. Traffic network pattern and optimization of the three economic circles in Shandong Province from the perspective of space syntax[J]. Geography and Geo-nformation Science, 2023, 39(1):55-61. ]

[19]
Lee S, Kim S, Kim J. Robustness analysis of public transportation systems in Seoul using general multilayer network models[J]. The Journal of Supercomputing, 2024, 80(18):26589-26613. DOI:10.1007/s11227-024-06404-2

[20]
Tariverdi M, Nunez-del-Prado M, Leonova N, et al. Measuring accessibility to public services and infrastructure criticality for disasters risk management[J]. Scientific Reports, 2023, 13:1569. DOI:10.1038/s41598-023-28460-z

PMID

[21]
刘海燕, 庞小平, 王跃, 等. 利用逻辑回归的南极常年考察站选址定量研究[J]. 武汉大学学报(信息科学版), 2017, 42(3):390-394.

[Liu H Y, Pang X P, Wang Y, et al. Quantitative research for site-selection of Antarctic year-round research stations based on logistic regression[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3):390-394. ] DOI: 10.13203/j.whugis20150260

[22]
Zhou L, Wang S H, Xu Z B. A multi-factor spatial optimization approach for emergency medical facilities in Beijing[J]. ISPRS International Journal of Geo-Information, 2020, 9(6):361. DOI: 10.3390/ijgi9060361

[23]
张嘉琪, 杜开虎, 任书良, 等. 多源空间大数据场景下的家装品牌线下广告选址[J]. 武汉大学学报(信息科学版), 2022, 47(9):1406-1415.

[Zhang J Q, Du K H, Ren S L, et al. Site selection of outdoor advertisement for home decoration brands based on multi-source spatial big data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9):1406-1415. ] DOI: 10.13203/j.whugis20190468

[24]
Zhang B, Hu S G, Wang H J, et al. A size-adaptive strategy to characterize spatially heterogeneous neighborhood effects in cellular automata simulation of urban growth[J]. Landscape and Urban Planning, 2023, 229:104604. DOI: 10.1016/j.landurbplan.2022.104604

[25]
Chen X, Wang S H, Li H L, et al. An attention model with multiple decoders for solving p-Center problems[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 125:103526. DOI:10.1016/j.jag.2023.103526

[26]
关亚宾, 马瑞, 孔云峰. 城市社区便民服务中心选址模型研究[J]. 地球信息科学学报, 2023, 25(11):2164-2177.

DOI

[Guan Y B, Ma R, Kong Y F. A new location model for site planning of community convenience service center[J]. Journal of Geo-information Science, 2023, 25(11):2164-2177. ] DOI:10.12082/dqxxkx.2023.230349

[27]
Zhong Y, Wang S H, Liang H J, et al. ReCovNet: Reinforcement learning with covering information for solving maximal coverage billboards location problem[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 128:103710. DOI: 10.1016/j.jag.2024.103710

[28]
Liang H J, Wang S H, Li H L, et al. Sponet: Solve spatial optimization problem using deep reinforcement learning for urban spatial decision analysis[J]. International Journal of Digital Earth, 2024, 17(1):2299211. DOI:10.1080/17538947.2023.2299211

[29]
Fabbiani E, Nesmachnow S, Toutouh J, et al. Analysis of mobility patterns for public transportation and bus stops relocation[J]. Programming and Computer Software, 2018, 44(6):508-525. DOI:10.1134/S0361768819010031

[30]
王中, 曹凯. 耦合改进图注意力网络与深度强化学习的公共服务设施智能化选址方法[J]. 地球信息科学学报, 2024, 26(11):2452-2464.

DOI

[Wang Z, Cao K. An intelligent site selection approach for public service facilities coupled with improved graph attention network and deep reinforcement learning[J]. Journal of Geo-Information Science, 2024, 26(11):2452-2464.]

[31]
Chen Y, Yu B J, Shu B, et al. Exploring the spatiotemporal patterns and correlates of urban vitality: Temporal and spatial heterogeneity[J]. Sustainable Cities and Society, 2023, 91:104440. DOI: 10.1016/j.scs.2023.104440

[32]
Zhang K Q, Chen M Z. Multi-method analysis of urban green space accessibility: Influences of land use, greenery types, and individual characteristics factors[J]. Urban Forestry & Urban Greening, 2024, 96:128366. DOI:10.1016/j.ufug.2024.128366

[33]
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32. DOI:10.1023/A:1010933404324

[34]
王超, 阚瑷珂, 曾业隆, 等. 基于随机森林模型的西藏人口分布格局及影响因素[J]. 地理学报, 2019, 74(4):664-680.

DOI

[Wang C, Kan A K, Zeng Y L, et al. Population distribution pattern and influencing factors in Xizang based on random forest model[J]. Acta Geographica Sinica, 2019, 74(4):664-680. ]

[35]
李业涵, 周媛, 吴雪飞. 基于地理探测器和随机森林模型的区域景观游憩服务潜在供应评估方法研究——以亚热带湿润淮阳低山景观区为例[J]. 生态学报, 2024, 44(13):5629-5645.

[Li Y H, Zhou Y, Wu X F. Assessment method for potential supply of recreational services in regional landscapes based on Geographical Detector and Random Forest model[J]. Acta Ecologica Sinica, 2024, 44(13):5629-5645. ] DOI:10.20103/j.stxb.202309041906

[36]
邢晓语, 杨秀春, 徐斌, 等. 基于随机森林算法的草原地上生物量遥感估算方法研究[J]. 地球信息科学学报, 2021, 23(7):1312-1324.

DOI

[Xing X Y, Yang X C, Xu B, et al. Remote sensing estimation of grassland aboveground biomass based on random forest[J]. Journal of Geo-information Science, 2021, 23(7):1312-1324. ] DOI:10.12082/dqxxkx.2021.200605

[37]
Gudiyangada Nachappa T, Tavakkoli Piralilou S, Gholamnia K, et al. Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory[J]. Journal of Hydrology, 2020, 590:125275. DOI:10.1016/j.jhydrol.2020.125275

[38]
Sagi O, Rokach L. Approximating XGBoost with an interpretable decision tree[J]. Information Sciences, 2021, 572:522-542. DOI:10.1016/j.ins.2021.05.055

[39]
Ma M H, Zhao G, He B S, et al. XGBoost-based method for flash flood risk assessment[J]. Journal of Hydrology, 2021, 598:126382. DOI:10.1016/j.jhydrol.2021.126382

[40]
Zhang J Y, Ma X L, Zhang J L, et al. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model[J]. Journal of Environmental Management, 2023, 332:117357. DOI:10.1016/j.jenvman.2023.117357

[41]
晏红波, 梁雨豪, 卢献健, 等. 基于XGBoost融合多维度时空数据的干旱遥感建模及应用研究[J]. 地球信息科学学报, 2024, 26(6):1531-1546.

DOI

[Yan H B, Liang Y H, Lu X J, et al. Remote sensing modeling and applications in drought monitoring based on XGBoost and fusion of multi-dimensional spatiotemporal data[J]. Journal of Geo-information Science, 2024, 26(6):1531-1546. ] DOI:10.12082/dqxxkx.2024.230719

[42]
Pramanik P, Jana R K, Ghosh I. AI readiness enablers in developed and developing economies: Findings from the XGBoost regression and explainable AI framework[J]. Technological Forecasting and Social Change, 2024, 205:123482. DOI:10.1016/j.techfore.2024.123482

[43]
Ogunleye A, Wang Q G. XGBoost model for chronic kidney disease diagnosis[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17(6):2131-2140. DOI:10.1109/TCBB.2019.2911071

[44]
中华人民共和国住房和城乡建设部. 城市道路公共交通站、场、厂工程设计规范: CJJ/T 15—2011[S]. 北京: 中国建筑工业出版社, 2012.

[ Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of urban road public transportation stop, terminus and depot engineering: CJJ/T 15—2011[S]. Beijing: China Architecture & Building Press, 2012. ]

[45]
可持续发展大数据国际研究中心(CBAS). 地球大数据支撑可持续发展目标报告[R]. 2024.

[ International Research Center of Big Data for Sustainable Development Goals. Big Earth Data in Support of the Sustainable Development Goals[R]. 2024.] DOI:http://doi.org/10.12237/casearth.CBAS2024P01

[46]
Song X M, Zhang J Y, AghaKouchak A, et al. Rapid urbanization and changes in spatiotemporal characteristics of precipitation in Beijing metropolitan area[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(19):11,250-11,271. DOI:10.1002/2014JD022084

[47]
Yu Q Y, Gu Y L, Yang S Y, et al. Discovering spatiotemporal patterns and urban facilities determinants of cycling activities in Beijing[J]. Journal of Geovisualization and Spatial Analysis, 2021, 5(1):16. DOI:10.1007/s41651-021-00084-9

[48]
Hu R, Zhang C. Research on urban evolution in China from an ecological perspective: A case of Beijing[J]. Journal of Urban Planning and Development, 2023, 149(1):05022047. DOI:10.1061/(asce)up.1943-5444.0000902

[49]
张磊, 窦旺胜, 秦波. 街道尺度下北京城市公共体育设施空间配置研究[J]. 地球信息科学学报, 2024, 26(2):381-392.

DOI

[Zhang L, Dou W S, Qin B. Study on spatial allocation of public sports facilities in Beijing at residential community scale[J]. Journal of Geo-Information Science, 2024, 26(2):381-392. ]

[50]
高顺祥, 陈珍, 张志健, 等. 骑行替代步行后公共交通可达性改善效果评估方法[J]. 地球信息科学学报, 2023, 25(3):439-449.

DOI

[Gao S X, Chen Z, Zhang Z J, et al. Evaluation of improvement of public transport accessibility considering riding instead of walking[J]. Journal of Geo-information Science, 2023, 25(3):439-449. ] DOI:10.12082/dqxxkx.2023.220495

[51]
Chen Y H, Xu C C, Ge Y, et al. A 100 M gridded population dataset of China's seventh census using ensemble learning and big geospatial data[J]. Earth System Science Data, 2024, 16:3705-3718. DOI:10.5194/essd-16-3705-2024

[52]
Li Z H, Zhang H Y, Lu F X, et al. Breaking the resolution barrier: A low-to-high network for large-scale high-resolution land-cover mapping using low-resolution labels[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 192:244-267. DOI:10.1016/j.isprsjprs.2022.08.008

[53]
王少华. 城市交通网络演化与网络特征研究:以北京市为例[D]. 北京: 中国科学院大学, 2013.

[Wang S H. Research on Evolution and Characteristics of Urban Traffic Network--Case of Beijing[D]. Beijing: University of Chinese Academy of Sciences. ]

文章导航

/