Journal of Geo-information Science ›› 2018, Vol. 20 ›› Issue (10): 1467-1477.doi: 10.12082/dqxxkx.2018.180224
Special Issue: 人口与城市研究
Previous Articles Next Articles
LIN Wenqi1,2(), CHEN Huiyan1,*(
), XIE Pan1, LI Ying1, CHEN Qingning1, LI Dong1
Received:
2018-05-03
Revised:
2018-07-04
Online:
2018-10-25
Published:
2018-10-17
Contact:
CHEN Huiyan
E-mail:linwq@tsinghua.edu.cn;chenhuiyan_12@163.com
Supported by:
LIN Wenqi,CHEN Huiyan,XIE Pan,LI Ying,CHEN Qingning,LI Dong. Spatial-temporal Variation Evaluation and Prediction of Population in Chaoyang District of Beijing Based on Multisource Data[J].Journal of Geo-information Science, 2018, 20(10): 1467-1477.DOI:10.12082/dqxxkx.2018.180224
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 刘瑜,肖昱,高松,等.基于位置感知设备的人类移动研究综述[J].地理与地理信息科学,2011,27(4):8-13. |
[ Liu Y, Xiao Y, Gao S, et al.A review of human mobility research based on location aware devices[J]. Geography and Geo-information Science, 2011,27(4):8-13. ] | |
[2] | 郭璨,甄峰,朱寿佳.智能手机定位数据应用于城市研究的进展与展望[J].人文地理,2014,29(6):18-23. |
[ Guo C, Zhen F, Zhu S J.Progress and prospect of the application of amart phone lbs data in urban researches[J]. Human Geography, 2014,29(6):18-23. ] | |
[3] | Vieira M R, Inez V F I, Oliver N, et al. Characterizing dense urban areas from mobile phone-call data: discovery and social dynamics[C]. Proceedings of 2010 IEEE Second International Conference, 2010:241-248. |
[4] | 李明晓,陈洁,张恒才,等.上海市精细时空尺度人口分布估计与特征分析[J].地球信息科学学报,2017,19(6):800-807. |
[ Li M X, Chen J, Zhang H C, et al.Fine-grained population estimation and distribution characteristics in Shanghai[J]. Journal of Geo-information Science, 2017,19(6):800-807. ] | |
[5] |
Deville P, Linard C, Martin S, et al.Dynamic population mapping using mobile phone data[J]. Proceedings of the National Academy of Sciences, 2014,111(45):15888-15893.
doi: 10.1073/pnas.1408439111 |
[6] | 曹劲舟,涂伟,李清泉,等.基于大规模手机定位数据的群体活动时空特征分析[J].地球信息科学学报,2017,19(4):467-474. |
[ Cao J Z,Tu W, LI Q Q, et al.Spatio-temporal analysis of aggregated human activities based on massive mobile phone tracking data[J]. Journal of Geo-information Science, 2017,19(4):467-474. ] | |
[7] | 钟炜菁,王德,谢栋灿,等.上海市人口分布与空间活动的动态特征研究—基于手机信令数据的探索[J].地理研究,2017,36(5):972-984. |
[ Zhong W J, Wang D, Xie D C,et al.Dynamic characteristics of Shanghai's populationdistribution using cell phone signaling data[J]. Geographical Research, 2017,36(5):972-984. ] | |
[8] |
孙斌栋,魏旭红.上海都市区就业——人口空间结构演化特征[J].地理学报,2014,69(6):747-758.
doi: 10.11821/dlxb201406003 |
[ Sun B D, Wei X H.Spatial distribution and structure evolution of employment and population in Shanghai metropolitan area[J]. Acta Geographica Sinica, 2014,69(6):747-758. ]
doi: 10.11821/dlxb201406003 |
|
[9] |
Lee R D, Tuljapurkar S.Stochastic population forecasts for the United States: Beyond high, medium, and low[J]. Publications of the American Statistical Association, 1994,89(428):1175-1189.
doi: 10.1080/01621459.1994.10476857 pmid: 12155397 |
[10] |
Karlsson A.Statistical demography and forecasting[J]. Psychometrika, 2007,72(2):273-274.
doi: 10.1007/s11336-005-1401-z |
[11] |
Raftery A E, Li N, Ševčíková H, et al.Inaugural article by a recently elected academy member: Bayesian probabilistic population projections for all countries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(35):13915-13921.
doi: 10.1073/pnas.1211452109 |
[12] | 顾川. 山东省人口预测与分析[D].济南:山东师范大学,2017. |
[ Gu C.Prediction and analysis of population in Shandong[D]. Jinan: Shandong Normal University, 2017. ] | |
[13] | 仰园. 全面二孩政策下中国人口总量的预测[D].合肥:中国科学技术大学,2017. |
[ Yang Y.Prediction of China's population based on the universal two-child policy[D]. Hefei: University of Science and Technology of China,2017. ] | |
[14] | 安亚革. 基于人口生育政策变动的中国人口预测分析[D].沈阳:辽宁大学,2017. |
[ An Y G.Analysis of chinese population prediction based on the population birth policy change[D]. Shenyang: Liaoning University, 2017. ] | |
[15] |
Yue T X, Wang Y A, Chen S P, et al.Numerical simulation of population distribution in China[J]. Population & Environment, 2003,25(2):141-163.
doi: 10.1023/B:POEN.0000015562.88915.01 |
[16] |
廖一兰,王劲峰,孟斌,等.人口统计数据空间化的一种方法[J].地理学报,2007,62(10):1110-1119.
doi: 10.3321/j.issn:0375-5444.2007.10.010 |
[ Liao Y L, Wang J F, Meng B, et al.A method of spatialization of statistical population[J]. Acta Geographica Sinica, 2007,62(10):1110-1119. ]
doi: 10.3321/j.issn:0375-5444.2007.10.010 |
|
[17] | Zhang J, Zheng Y, Qi D, et al.DNN-based prediction model for spatio-temporal data[C]. ACM Sigspatial International Conference on Advances in Geographic Information Systems. ACM, 2016:92. |
[18] | 胡曾曾,赵志龙,张贵祥.非首都功能疏解背景下北京市人口空间分布形态模拟[J].地球信息科学学报,2018,20(2):205-216. |
[ Hu Z Z, Zhao Z L, Zhang G X.Simulation and projection of the spatial pattern of the population in Beijing under the background of non-capital function extraction[J]. Journal of Geo-information Science, 2018,20(2):205-216. ] | |
[19] |
陈会宴,廖一兰,张宁旭,等.山西省原平市神经管畸形时空分析[J].地球信息科学学报,2017,19(4):502-510.
doi: 10.3969/j.issn.1560-8999.2017.04.008 |
[ Chen H Y, Liao Y L, Zhang N X, et al.Spatial and temporal analysis of neural tube defects in Yuanping County, Shanxi Province[J]. Journal of Geo-information Science, 2017,19(4):502-510. ]
doi: 10.3969/j.issn.1560-8999.2017.04.008 |
|
[20] | 李世元,王学梅.贝叶斯时空模型在空间流行病学中的研究进展[J].世界最新医学信息文摘,2017,17(34):55-57. |
[ Li S Y, Wang X M.Research Progress of Bayesian spatial temporal model in spatial epidemiology[J]. World Latest Medicine Information, 2017,17(34):55-57. ] | |
[21] |
Knorr-Held L.Bayesian modelling of inseparable space-time variation in disease risk[J]. Statistics in Medicine, 2000,19(17-18):2555-2567.
doi: 10.1002/1097-0258(20000915/30)19:17/183.0.CO;2-# pmid: 10960871 |
[22] |
Li G, Haining R, Richardson S, et al.Space-time variability in burglary risk: A Bayesian spatio-temporal modelling approach[J]. Spatial Statistics, 2014,9:180-191.
doi: 10.1016/j.spasta.2014.03.006 |
[23] |
Law J, Quick M, Chan P.Bayesian spatio-temporal modeling for analyzing local patterns of crime over time at the small-area level[J]. Journal of Quantitative Criminology, 2014,30(1):57-78.
doi: 10.1007/s10940-013-9194-1 |
[24] |
王晓荷,田茂再.基于分层贝叶斯时空模型的雾霾天气过程计数分析[J].数理统计与管理,2017,36(6):970-982.
doi: 10.13860/j.cnki.sltj.20170506-002 |
[ Wang X H, Tian M Z.Analysis of haze counts using hierarchical Bayesian spatiotemporal models[J]. Journal of Applied Statistics & Management, 2017,36(6):970-982. ]
doi: 10.13860/j.cnki.sltj.20170506-002 |
|
[25] |
梅波,田茂再.贝叶斯时空分位回归模型及其对北京PM2.5浓度的研究[J].统计研究,2016,33(12):91-100.
doi: 10.19343/j.cnki.11-1302/c.2016.12.011 |
[ Mei Bo, Tian M Z.Bayesian spatio-temporal quantile regression model and its application in PM2.5 concentration in Beijing[J]. Statistical Research, 2016,33(12):91-100. ]
doi: 10.19343/j.cnki.11-1302/c.2016.12.011 |
|
[26] | Bakar, Shuvo K.Bayesian analysis of daily maximum ozone levels[D]. Southampton: University of Southampton, 2012. |
[27] | Sarto S D, Ranalli M G, Bakar K S, et al.Bayesian spatio-temporal modeling of urban air pollution dynamics[C]. Joint Meeting Metma Vii - Graspa, 2014. |
[28] | 伍维模,王家强,曹琦,等.塔里木盆地北缘盐土有机碳含量的贝叶斯地统计预测[J].应用生态学报,2017,28(2):439-448. |
[ Wu W M, Wang J Q, Cao Q, et al.Bayesian geostatistical prediction of soil organic carbon contents of solonchak soils in northern Tarim Basin, Xinjiang, China[J]. Chinese Journal of Applied Ecology, 2017,28(2):439-448. ] | |
[29] |
李俊明. 基于Bayesian层次时空模型的我国老龄化分析与预测[J].统计研究,2016,33(8):89-94.
doi: 10.19343/j.cnki.11-1302/c.2016.08.011 |
[ Li J M.Space-time variation of Chinese aging based on Bayesian hierarchy spatio-temporal model[J]. Statistical Research, 2016,33(8):89-94. ]
doi: 10.19343/j.cnki.11-1302/c.2016.08.011 |
|
[30] | 李原. 贝叶斯层次时空模型在省际人口流入分析中的应用[J].统计与决策,2018(6):73-77. |
[ Li Y.The application of Bayesian hierarchy spatio-temporal model in analyzing population inflows in provinces[J].Statistics & Decision, 2018(6):73-77. ] | |
[31] |
王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134.
doi: 10.11821/dlxb201701010 |
[ Wang J F, Xu C D.Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017,72(1):116-134. ]
doi: 10.11821/dlxb201701010 |
|
[32] | Haining R.Spatial data analysis: Theory and practice[M]. UK: Cambridge University Press, 2003: 307-377. |
[33] | Bakar K S, Sahu S K. spTimer:spatio-temporal Bayesian modeling using R[J]. Journal of Statistical Software, 2015,63(15):1-32. |
[34] |
Smith A F M, Roberts G O. Bayesian computation via the Gibbs sampler and related Markou chain Monto Carlo methods[J]. Journal of the Royal Statistical Society Series B, 1993,55(1): 3-23.
doi: 10.2307/2346063 |
[35] | Dryden I L, Kent J T.13 Bayesian forecasting using spatiotemporal models with applications to ozone concentration levels in the Eastern United States[M]. Geometry: Driven Statistics John Wiley & Sons, 2015. |
[36] |
Sahu S K, Gelfand A E, Holland D M.High resolution spacetime ozone modeling for assessing trends[J]. Publications of the American Statistical Association, 2007,102(480):1221-1234.
doi: 10.1198/016214507000000031 pmid: 19759840 |
[37] | Sahu S K, Bakar K S.Hierarchical Bayesian auto-regressive models for large space time data with applications to ozone concentration modelling by Sujit Kumar Sahu and Khandoker Shuvo Bakar: Rejoinder[J]. Applied Stochastic Models in Business & Industry, 2012,28(5):395-415. |
[38] | 北京市交通委:春节期间在京人口减少约848万[ED/OL].[2017/2/2]. |
[ Beijing Traffic Committee: population in Beijing declined about 8.48 million during the Spring Festival[ED/OL]. [2017/2/2]. ] | |
[39] | 中共北京市委北京市人民政府印发《关于率先行动改革优化营商环境实施方案》的通知[ED/OL]. [2017/9/16]. . |
[ Beijing Committee of the Communist Party of China The people's Government of Beijing City print and distribute the notice of 《Reforming and optimizing the implementation plan for business environment are the first to act.》[ED/OL]. [2017/9/16]. ] |
[1] | YANG Yingpin, WU Zhifeng, HUANG Qiting, LUO Jiancheng, WU Tianjun, DONG Wen, HU Xiaodong, XIAO Wenju. Extraction of Sugarcane Plantation Distribution in Western Guangdong by Combining Remote Sensing and Statistic Data and Its Spatiotemporal Analysis [J]. Journal of Geo-information Science, 2023, 25(5): 1012-1026. |
[2] | XU Fanshu, WANG Baoyun, HAN Jun. A Potential Gully Debris Flows Hazard Assessment Method: A CNN Model based on Multi-source Data Fusion [J]. Journal of Geo-information Science, 2023, 25(3): 588-605. |
[3] | PEI Zehua, GE Miao, LI Hao, HE Jinwei, WANG Congxia. Environmental Factors Influencing HDL-C in Middle-aged and Elderly Chinese Population based on Random Forest Model [J]. Journal of Geo-information Science, 2022, 24(7): 1286-1300. |
[4] | YE Huping, LIAO Xiaohan, HE Xianqiang, YUE Huanyin. Remote Sensing Monitoring and Variation Analysis of Marine Ecological Environment in Coastal Waters of Sri Lanka [J]. Journal of Geo-information Science, 2020, 22(7): 1463-1475. |
[5] | FANG Zhixiang,NI Yaqian,ZHANG Tao,FENG Mingxiang,YU Chong. Using Terminal Location Spatio-temporal Transfer Probability to Predict Subscriber Base Size of Communication Base Station [J]. Journal of Geo-information Science, 2017, 19(6): 772-781. |
[6] | HE Tian,SHAO Quanqin. Spatial-temporal Variation of Terrestrial Evapotranspiration in China from 2001 to 2010 Using MOD16 Products [J]. Journal of Geo-information Science, 2014, 16(6): 979-988. |
[7] | BAI Shuying,SHI Jianqiao,GAO Jixi,BU Jun. Analysis of Spatial-Temporal Variations of Snow Depth over the Qinghai-Tibetan Plateau during 1979-2010 [J]. Journal of Geo-information Science, 2014, 16(4): 628-637. |
[8] | ZHANG Jinqu, ZHU Yunqiang, WANG Juanle, SONG Jia, SUN Jiulin. A Service-oriented Virtual Integration and Visualization Analysis of Geo-multisource Data [J]. , 2010, 12(5): 613-619. |
|