Journal of Geo-information Science ›› 2020, Vol. 22 ›› Issue (10): 2062-2077.doi: 10.12082/dqxxkx.2020.190547
Previous Articles Next Articles
LIU Weihua1,2(), WANG Siyuan1,*(
), MA Yuanxu1,2, SHEN Ming1,2, YOU Yongfa1,2, HAI Kai3, WU Linlin4
Received:
2019-09-25
Revised:
2019-12-11
Online:
2020-10-25
Published:
2020-12-25
Contact:
WANG Siyuan
E-mail:liuwh@radi.ac.cn;wangsy@radi.ac.cn
Supported by:
LIU Weihua, WANG Siyuan, MA Yuanxu, SHEN Ming, YOU Yongfa, HAI Kai, WU Linlin. A Remote Sensing Method for Retrieving Chlorophyll-a Concentration from River Water Body[J].Journal of Geo-information Science, 2020, 22(10): 2062-2077.DOI:10.12082/dqxxkx.2020.190547
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Descriptive statistics of the concentration of water constituents in July 2018
水质参数 | 最小值 | 最大值 | 平均值 | 标准差 | 变异系数 | 采样数 | |
---|---|---|---|---|---|---|---|
叶绿素a/(mg/m3) | 总体 | 2.53 | 8.72 | 4.29 | 1.65 | 0.39 | 38 |
干流 | 2.78 | 8.06 | 4.16 | 1.37 | 0.33 | 12 | |
湖泊 | 2.53 | 8.72 | 5.33 | 1.98 | 0.37 | 13 | |
支流 | 2.67 | 5.24 | 3.37 | 0.67 | 0.20 | 13 | |
浊度(NTU) | 总体 | 2.57 | 93.42 | 34.23 | 26.56 | 0.78 | 38 |
干流 | 4.33 | 93.42 | 49.54 | 29.81 | 0.60 | 12 | |
湖泊 | 2.57 | 44.71 | 25.77 | 13.92 | 0.54 | 13 | |
支流 | 2.89 | 75.38 | 28.56 | 16.36 | 0.57 | 13 |
Tab. 4
Descriptive statistics of the water samples with D3B=-0.051 and Chl-a=4.5 mg/m3as hierarchical threshold
D3B分组 | Chl-a最小值 | Chl-a最大值 | Chl-a均值 | 标准差 | 变异系数 | 采样点数 |
---|---|---|---|---|---|---|
D3B≤-0.051 | 2.53 | 4.25 | 3.40 | 0.50 | 0.15 | 24 |
D3B>-0.051 | 2.67 | 8.72 | 6.05 | 1.73 | 0.28 | 12 |
Chl-a分组 | D3B最小值 | D3B最大值 | D3B均值 | 标准差 | 变异系数 | 采样点数 |
Chl-a ≤4.50 mg/m3 | -0.092 | -0.041 | -0.072 | 0.014 | -0.19 | 26 |
Chl-a>4.50 mg/m3 | -0.047 | 0.026 | -0.014 | 0.023 | -1.69 | 10 |
[1] | Babin M, Morel A, Gentili B. Remote sensing of sea surface Sun-induced chlorophyll fluorescence: Consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence[J]. International Journal of Remote Sensing, 1996,17(12):2417-2448. |
[2] | O'Reilly J E, Maritorena S, Mitchell B G, et al. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research Oceans, 1998,103(C11):24937-24953. |
[3] | Koponen S, Attila J, Pulliainen J, et al. A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland[J]. Continental Shelf Research, 2007,27(2):228-244. |
[4] | Le C, Hu C, Cannizzaro J, et al. Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary[J]. Remote Sensing of Environment, 2013,129(2):75-89. |
[5] | Dekker A G, Brando V E, Anstee J M. Retrospective seagrass change detection in a shallow coastal tidal Australian lake[J]. Remote Sensing of Environment, 2005,97(4):415-433. |
[6] | Gons H J, Auer M T, Effler S W. MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes[J]. Remote Sensing of Environment, 2008,112(11):4098-4106. |
[7] | Le C, Li Y M, Zha Y, et al. A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China[J]. Remote Sensing of Environment, 2009,113(6):1175-1182. |
[8] | Matsushita B, Yang W, Yu G, et al. A hybrid algorithm for estimating the chlorophyll-a concentration across different trophic states in Asian inland waters[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,102(2):28-37. |
[9] | Zhang F F, Li J S, Shen Q, et al. Algorithms and schemes for chlorophyll a estimation by remote sensing and optical classification for turbid lake Taihu, China[J]. IEEE Journal of Selected Topics in Applied Earth Observations & remote sensing, 2015,8(1):350-364. |
[10] | Smith M E, Robertson L L, Bernard S. An optimized chlorophyll a switching algorithm for MERIS and OLCI in phytoplankton-dominated waters[J]. Remote Sensing of Environment, 2018,215(9):217-227. |
[11] | Tassan S. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters[J]. Applied Optics, 1994,33(12):2369-2378. |
[12] | 潘洋洋. SVM模型在叶绿素a非线性定量遥感反演中的应用研究[D]. 武汉:华中科技大学, 2017. |
[ Pan Y Y. Application of SVM model to chlorophyll-a nonlinear quantitative remote sensing retrieval[D]. Wuhan: Huazhong University of Science and Technology, 2017. ] | |
[13] | 石绥祥, 王蕾, 余璇, 等. 长短期记忆神经网络在叶绿素a浓度预测中的应用[J]. 海洋学报, 2020,42(2):134-142. |
[ Shi S X, Wang L, Yu X, et al. Application of long term and short term memory neural network in prediction of chlorophyll a concentration[J]. Acta Oceanologica Sinica, 2020,42(2):134-142. ] | |
[14] | Gitelson A, Keydan G, Shishkin V. Inland waters quality assessment from satellite data in visible range of the spectrum[J]. Soviet Remote Sensing, 1985,6:28-36. |
[15] |
Dall’Olmo , Giorgio , Gitelson A A. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results—erratum[J]. Applied Optics, 2005,44(3):412-22.
pmid: 15717831 |
[16] | 郭宇龙, 李云梅, 李渊, 等. 一种基于GOCI数据的叶绿素a浓度三波段估算模型[J]. 环境科学, 2015,36(9):3175-3185. |
[ Guo Y L, Li Y M, Li Y. et al. Three band chlorophyll-a concentration estimation model based on GOCI imagery[J]. Environmental Science, 2015,36(9):3175-3185. ] | |
[17] | 徐升, 顾长梅, 钱贞兵, 等. 基于四波段模型的巢湖水体藻蓝素浓度反演[J]. 绿色科技, 2016(16):18-22,25. |
[ Xu S, Gu C M, Qian Z B, et al. Retrieval of the concentration of phycocyanobilin in Chaohu Lake based on four-band model[J]. Journal of Green Science and Technology, 2016(16):18-22,25. ] | |
[18] | Anas E A, Karem C, Isabelle L, et al. Comparative analysis of four models to estimate chlorophyll-a concentration in case-2 waters using MODerate Resolution Imaging Spectroradiometer (MODIS) imagery[J]. Remote Sensing, 2012,4(8):2373-2400. |
[19] | 刘文雅, 邓孺孺, 梁业恒, 等. 基于辐射传输模型的巢湖叶绿素a浓度反演[J]. 国土资源遥感, 2019,31(2):102-110. |
[ Liu W Y, Deng R R, Liang Y H, et al. Retrieval of chlorophyll-a concentration in Chaohu based on radiative transfer model[J]. Remote Sensing for Land and Resources, 2019,31(2):102-110. ] | |
[20] | 李云梅, 黄家柱, 韦玉春, 等. 用分析模型方法反演水体叶绿素的浓度[J]. 遥感学报, 2006,10(2):27-33. |
[ Li Y M, Huang J Z, Wei Y C. et al. Inversing chlorophyll concentration of Taihu Lake by analytic model[J]. Journal of Remote Sensing, 2006,10(2):27-33. ] | |
[21] | Gower J F R, Doerffer R, Borstad G A. Interpretation of the 685nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS[J]. International Journal of Remote Sensing, 1999,20(9):1771-1786. |
[22] | Gower J, King S, Borstad G, et al. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer[J]. International Journal of Remote Sensing, 2005,26(9):2005-2012. |
[23] | Shen F, Zhou Y X, Li D J, et al. Medium Resolution Imaging Spectrometer (MERIS) estimation of chlorophyll-a concentration in the turbid sediment-laden waters of the Changjiang (Yangtze) Estuary[J]. International Journal of Remote Sensing, 2010,31(17):4635-4650. |
[24] | 陈芸芝, 郑高强, 汪小钦, 等. 基于GSM01融合的多传感器数据叶绿素a浓度反演[J]. 地球信息科学学报, 2013,15(6):911-917. |
[ Chen Y Z, Zheng G Q, Wang Q Q, et al. Retrieval of chlorophyll a concentration with multi-sensor data by GSM01 merging algorithm[J]. Journal of Geo-information Science, 2013,15(6):911-917. ] | |
[25] | Gurlin D, Gitelson A A, Moses W J. Remote estimation of chl-a concentration in turbid productive waters: Return to a simple two-band NIR-red model?[J]. Remote Sensing of Environment, 2011,115(12):3479-3490. |
[26] | 张运林, 冯胜, 马荣华, 等. 太湖秋季光学活性物质空间分布及其遥感估算模型研究[J]. 武汉大学学报·信息科学版, 2008,33(9):967-972. |
[ Zhang Y L, Feng S, Ma R H, et al. Spatial variation and estimation of optically active substances in Taihu Lake in autumn[J]. Geomatics and Information Science of Wuhan University, 2008,33(9):967-972. ] | |
[27] | Binding C E, Greenberg T A, Bukata R P. The MERIS Maximum Chlorophyll Index; its merits and limitations for inland water algal bloom monitoring[J]. Journal of Great Lakes Research, 2013,39(Suppl.1):100-107. |
[28] | 阎福礼, 刘韶菲, 王世新, 等. 太湖浮游藻类的后向散射分离及其叶绿素a浓度反演[J]. 地球信息科学学报, 2014,16(6):989-996. |
[ Yan F L, Liu Y F, Wang S X, et al. Phytoplankton backscattering coefficients partitioning and its applications in retrieving chlorophyll-a concentrations in Taihu Lake[J]. Journal of Geo-information Science, 2014,16(6):989-996. ] | |
[29] | Gons H J. A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters[J]. Journal of Plankton Research, 2002,24(9):947-951. |
[30] |
Gilerson A A, Gitelson A A, Zhou J, et al. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands[J]. Optics Express, 2010,18(23):24109.
doi: 10.1364/OE.18.024109 pmid: 21164758 |
[31] | 高庆, 艾里西尔·库尔班, 肖昊. 巴音布鲁克地区植物物候时空动态变化及其驱动分析[J]. 干旱区研究, 2018,35(6):1418-1426. |
[ Gao Q, Alishir K, Xiao H. Spatiotemporal variation of vegetation phenology and its driving factors in the Bayanbulak region[J]. Arid Zone Research, 2018,35(6):1418-1426. ] | |
[32] | 陈文玲, 何雨. 草原生态旅游资源开发评价体系构建与应用研究——以新疆巴音布鲁克草原为例[J]. 资源开发与市场, 2016,32(11):1394-1397. |
[ Chen W L, He Y. Research on establishment and application of evaluation system for the development of grassland ecotourism resources: A case study of Bayanbulak Grassland in Xinjiang[J]. Resource Development & Market, 2016,32(11):1394-1397. ] | |
[33] | 徐晓龙, 王新军, 朱新萍, 等. 1996-2015年巴音布鲁克天鹅湖高寒湿地景观格局演变分析[J]. 自然资源学报, 2018,33(11):39-53. |
[ Xu X L, Wang X J, Zhu X P, et al. Landscape pattern changes in alpine wetland of Bayanbulak Swan Lake during 1996-2015[J]. Journal of Natural Resources, 2018,33(11):39-53. ] | |
[34] | Carlson R E. Estimating trophic state[J]. LakeLine, 2007,27(1):25-28. |
[35] | 唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ:水面以上测量法[J]. 遥感学报, 2004,8(1):37-44. |
[ Tang J W, Tian G L, Wang X Y, et al. The methods of water spectra measurement and analysis Ⅰ: Above-Water Method[J]. Journal of Remote Sensing, 2004,8(1):37-44. ] | |
[36] | Knaeps E, Doxaran D, Dogliotti A, et al. The SeaSWIR dataset[J]. Earth System Science Data, 2018,10(3):1439-1449. |
[37] | Gitelson A A, Gurlin D, Moses W J, et al. A bio-optical algorithm for the remote estimation of the chlorophyll-a concentration in case 2 waters.[J]. Environmental Research Letters, 2009,4(4):1-5. |
[38] | Qi L, Hu C, Duan H, et al. A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: Theoretical basis and practical considerations[J]. Remote Sensing of Environment, 2014,154:298-317. |
[39] | Zimba P V, Gitelson A. Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems: model tuning and accuracy optimization[J]. Aquaculture, 2006,256(1):272-286. |
[40] | Thiemann S, Kaufmann H. Determination of chlorophyll content and trophic state of lakes using field spectrometer and IRS-1C satellite data in the Mecklenburg Lake District, Germany[J]. Remote Sensing of Environment, 2000,73(2):227-235. |
[41] | European Space Agency. ESA Copernicus Open Access Hub[DB/OL]. https://scihub.copernicus.eu/. 2019-08-25. |
[42] | 苏伟, 张明政, 蒋坤萍, 等. Sentinel-2卫星影像的大气校正方法[J]. 光学学报, 2018,38(1):322-331. |
[ Su W, Zhang M, Jiang K, et al. Atmospheric correction method for sentinel-2 satellite imagery[J]. Acta Optica Sinica, 2018,38(1):322-331. ] | |
[43] | 国家气象信息中心. 中国地面气候资料日值数据集(V3.0) [DB/OL]. http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html. 2019-09-01. |
[ National Meteorological Information Center. Dataset of Daily Climate Data from Chinese Surface Stations (V3.0)[DB/OL]. http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html. 2019-09-01.] | |
[44] | He X Q, Bai Y, Pan D, et al. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters[J]. Remote Sensing of Environment, 2013,133(6):225-239. |
[45] | Siswanto E, Tang J, Yamaguchi H, et al. Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas[J]. Journal of Oceanography, 2011,67(5):627-650. |
[46] | Mishra S, Mishra D R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters[J]. Remote Sensing of Environment, 2012(2), 117:394-406. |
[47] | Reynolds C S, Descy J P, Padisák J. Are phytoplankton dynamics in rivers so different from those in shallow lakes?[J]. Hydrobiologia, 1994,289(1):1-7. |
[48] | Carneiro F M, Nabout J C, Vieira L G, et al. Determinants of chlorophyll-aconcentration in tropical reservoirs[J]. Hydrobiologia, 2014,740(1):89-99. |
[49] | Staehr P A, Baastrup S L, Sand J K, et al. Lake metabolism scales with lake morphometry and catchment conditions[J]. Aquatic Sciences, 2012,74(1):155-169. |
[50] | 慈晖, 张强. 新疆NDVI时空特征及气候变化影响研究[J]. 地球信息科学学报, 2017,19(5):662-671. |
[ Ci H, Zhang Q. Spatio-temporal patterns of NDVI variations and possible relations with climate changes in Xinjiang province[J]. Journal of Geo-information Science, 2017,19(5):662-671. ] | |
[51] | 周梦甜, 李军, 朱康文. 近15a新疆不同类型植被NDVI时空动态变化及对气候变化的响应[J]. 干旱区地理, 2015,38(4):779-787. |
[ Zhou M T, Li J, Zhu K W. Spatial-temporal dynamics of different types of vegetation NDVI and its response to climate change in Xinjiang during 1998-2012[J]. Arid Land Geography, 2015,38(4):779-787. ] |
[1] | FAN Lanxin, WU Yanhong, CHI Haojing, ZHENG Siqi, YAN Jiaheng, REN Yongkang, SUN Zhonghua. Detecting Spatiotemporal Changes of Freshwater in Northwest China under a Warm-Wetting Climate using Remote Sensing [J]. Journal of Geo-information Science, 2023, 25(9): 1842-1854. |
[2] | XING Ziyao, DONG Xinrui, ZAN Xuli, YANG Shuai, HUANG Zihan, LIU Zhe, ZHANG Xiaodong. Flood Inundation Mapping and Estimation using VGI, Remote Sensing Images and Other Multi-source Data [J]. Journal of Geo-information Science, 2023, 25(9): 1869-1881. |
[3] | HAN Baohui, ZHAO Qichao, CHANG Rong, LI Xiaomeng, YAN Keqin, FU Qiming. Chlorophyll-a Concentration Inversion Model: Stacked Auto-encoder Particle Swarm Optimization BP Neural Network [J]. Journal of Geo-information Science, 2023, 25(9): 1882-1893. |
[4] | ZHANG Junyao, YANG Xiaomei, WANG Zhihua, YANG Haikun, ZHANG Bochun, WAN Qing, LEI Mei. Analysis of Pattern Evolution of Coal Mine Areas in Inner Mongolia from the Perspective of the Green Development Concept [J]. Journal of Geo-information Science, 2023, 25(8): 1655-1668. |
[5] | CAO Yu, FANG Xiuqin, YANG Lulu, JIANG Xinyuan, LIAO Meiyu, REN Liliang. Downscaling of CCI Soil Moisture in the Xiliaohe River Basin based on Random Forest [J]. Journal of Geo-information Science, 2023, 25(8): 1669-1681. |
[6] | ZHANG Hanbo, LI Tong, LI Xiaofang, DENG Ying, DENG Yingbin, JING Wenlong, HU Yiqiang, LI Yong, YANG Ji. A Short-term Prediction Method of Water Bloom based on UAV Remote Sensing and GWR [J]. Journal of Geo-information Science, 2023, 25(8): 1682-1698. |
[7] | LIN Na, HE Jing, WANG Bin, TANG Feifei, ZHOU Junyu, GUO Jiang. Intelligent Extraction of Urban Vegetation Information based on Vegetation Spectral Signature and Sep-UNet [J]. Journal of Geo-information Science, 2023, 25(8): 1717-1729. |
[8] | WU Min, ZHANG Mingda, LI Panpan, ZHANG Yongjian. Research on Provenance Model for Multi-source Remote Sensing Images [J]. Journal of Geo-information Science, 2023, 25(7): 1325-1335. |
[9] | ZHAO Dan, DU Ping, LIU Tao, LING Zhenfei. Spatio-temporal Distribution Prediction Model of Urban Theft by Fusing Graph Autoencoder and GRU [J]. Journal of Geo-information Science, 2023, 25(7): 1448-1463. |
[10] | YANG Yingpin, WU Zhifeng, HUANG Qiting, LUO Jiancheng, WU Tianjun, DONG Wen, HU Xiaodong, XIAO Wenju. Extraction of Sugarcane Plantation Distribution in Western Guangdong by Combining Remote Sensing and Statistic Data and Its Spatiotemporal Analysis [J]. Journal of Geo-information Science, 2023, 25(5): 1012-1026. |
[11] | LIU Xiao, LIU Zhi, LIN Yuzhun, WANG Shuxiang, ZUO Xibing. Class-centric Knowledge Distillation for RSI Scene Classification [J]. Journal of Geo-information Science, 2023, 25(5): 1050-1063. |
[12] | HENG Xuebiao, XU Hanwei, TANG Lu, TANG Heng, XU Yilei. Research on Land Cover Classification Method based on Improved Fully Convolutional Neural Network Model [J]. Journal of Geo-information Science, 2023, 25(3): 495-509. |
[13] | GAO Pengfei, CAO Xuefeng, LI Ke, YOU Xiong. Object Detection in Remote Sensing Images by Fusing Multi-neuron Sparse Features and Hierarchical Depth Features [J]. Journal of Geo-information Science, 2023, 25(3): 638-653. |
[14] | QIN Xiaowei, CHENG Bo, YANG Zhiping, LI Lin, DONG Wen, ZHANG Xin, YANG Shuwen, JIN Zongyi, XUE Qing. Identification of Parcel-Scale Crop Types in Southwestern Mountainous Area based on Time Series Remote Sensing Images [J]. Journal of Geo-information Science, 2023, 25(3): 654-668. |
[15] | CHEN Kai, LEI Shaohua, DAI Wen, WANG Chun, LIU Aili, LI Min. Terrain Rebuilding Method based on Open Source Data and Conditional Generative Adversarial Networks [J]. Journal of Geo-information Science, 2023, 25(2): 252-264. |
|