Journal of Geo-information Science ›› 2022, Vol. 24 ›› Issue (1): 100-113.doi: 10.12082/dqxxkx.2022.210359
Previous Articles Next Articles
WANG Xudong1(), YAO Yao1,2,*(
), REN Shuliang1, SHI Xuguo1
Received:
2021-06-28
Revised:
2021-09-22
Online:
2022-01-25
Published:
2022-03-25
Contact:
YAO Yao
E-mail:wxd@cug.edu.cn;yaoy@cug.edu.cn
Supported by:
WANG Xudong, YAO Yao, REN Shuliang, SHI Xuguo. A Coupled FLUS and Markov Approach to Simulate the Spatial Pattern of Land Use in Rapidly Developing Cities[J].Journal of Geo-information Science, 2022, 24(1): 100-113.DOI:10.12082/dqxxkx.2022.210359
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Summary of impact factor details
类别 | 空间变量 | 分辨率/m | 含义 |
---|---|---|---|
自然因素 | 高程/m | 30 | 地形高程条件 |
坡度/° | 地形坡度条件 | ||
到河流距离/m | 像元几何中心到最近河流的欧氏距离 | ||
到海岸线距离/m | 像元几何中心到最近海岸线的欧氏距离 | ||
交通因素 | 到主要道路距离/m | 像元几何中心到最近主要道路的欧氏距离 | |
到铁路距离/m | 像元几何中心到最近铁路的欧氏距离 | ||
路网密度/(km/km2) | 每个像元周边的道路分布密度 | ||
到地铁站距离/m | 30 | 像元几何中心到最近地铁站的欧氏距离 | |
公交站分布密度/(个/km2) | 每个像元周边的公交站分布密度 | ||
社会经济因素 | 到医疗设施距离/m | 像元几何中心到最近医疗设施的欧氏距离 | |
到区县中心距离/m | 像元几何中心到最近区县中心的欧氏距离 | ||
到学校距离/m | 像元几何中心到最近学校的欧氏距离 | ||
到娱乐场所距离/m | 像元几何中心到最近娱乐场所的欧氏距离 | ||
房屋价格分布/元 | 30 | 每个像元所在位置的房价精细制图 |
[1] |
De Palma A, Sanchez-Ortiz K, Martin P A, et al. Chapter four - challenges with inferring how land-use affects terrestrial biodiversity: study design, time, space and synthesis[A]. In: Bohan D A, Dumbrell A J, Woodward G, et al. Advances in Ecological Research[M]. Salt Lake City: Academic Press, 2018, 58:163-199. DOI: 10.1016/bs.aecr.2017.12.004
doi: 10.1016/bs.aecr.2017.12.004 |
[2] |
Galbraith S M, Hall T E, Tavárez H S, et al. Local ecological knowledge reveals effects of policy-driven land use and cover change on beekeepers in Costa Rica[J]. Land Use Policy, 2017, 69:112-122. DOI: 10.1016/j.landusepol.2017.08.032
doi: 10.1016/j.landusepol.2017.08.032 |
[3] |
Jayne T S, Chamberlin J, Headey D D. Land pressures, the evolution of farming systems, and development strategies in Africa: a synjournal[J]. Food Policy, 2014, 48:1-17. DOI: 10.1016/j.foodpol.2014.05.014
doi: 10.1016/j.foodpol.2014.05.014 |
[4] |
Brodie J, Wolanski E, Lewis S, et al. An assessment of residence times of land-sourced contaminants in the Great Barrier Reef lagoon and the implications for management and reef recovery[J]. Marine Pollution Bulletin, 2012, 65(4-9):267-279. DOI: 10.1016/j.marpolbul.2011.12.011
doi: 10.1016/j.marpolbul.2011.12.011 pmid: 22284702 |
[5] |
Liu X P, Ma L, Li X, et al. Simulating urban growth by integrating landscape expansion index (LEI) and cellular automata[J]. International Journal of Geographical Information Science, 2014, 28(1):148-163. DOI: 10.1080/13658816.2013.831097
doi: 10.1080/13658816.2013.831097 |
[6] |
White R, Engelen G. High-resolution integrated modelling of the spatial dynamics of urban and regional systems[J]. Computers, Environment and Urban Systems, 2000, 24(5):383-400. DOI: 10.1016/S0198-9715(00)00012-0
doi: 10.1016/S0198-9715(00)00012-0 |
[7] |
Clarke K C, Hoppen S, Gaydos L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay Area[J]. Environment and Planning B: Planning and Design, 1997, 24(2):247-261. DOI: 10.1068/b240247
doi: 10.1068/b240247 |
[8] |
Li X, Yeh A G. Modelling sustainable urban development by the integration of constrained cellular automata and GIS[J]. International Journal of Geographical Information Science, 2000, 14(2):131-152. DOI: 10.1080/136588100240886
doi: 10.1080/136588100240886 |
[9] |
Mitsova D, Shuster W, Wang X H. A cellular automata model of land cover change to integrate urban growth with open space conservation[J]. Landscape and Urban Planning, 2011, 99(2):141-153. DOI: 10.1016/j.landurbplan.2010.10.001
doi: 10.1016/j.landurbplan.2010.10.001 |
[10] |
Lau K H, Kam B H. A cellular automata model for urban land-use simulation[J]. Environment and Planning B: Planning and Design, 2005, 32(2):247-263. DOI: 10.1068/b31110
doi: 10.1068/b31110 |
[11] |
Wu D Q, Liu J, Wang S J, et al. Simulating urban expansion by coupling a stochastic cellular automata model and socioeconomic indicators[J]. Stochastic Environmental Research and Risk Assessment, 2010, 24(2):235-245. DOI: 10.1007/s00477-009-0313-3
doi: 10.1007/s00477-009-0313-3 |
[12] |
Li X, Yeh A G. Neural-network-based cellular automata for simulating multiple land use changes using GIS[J]. International Journal of Geographical Information Science, 2002, 16(4):323-343. DOI: 10.1080/13658810210137004
doi: 10.1080/13658810210137004 |
[13] |
Kamusoko C, Gamba J. Simulating urban growth using a Random Forest-cellular Automata (RF-CA) model[J]. ISPRS International Journal of Geo-Information, 2015, 4(2):447-470. DOI: 10.3390/ijgi4020447
doi: 10.3390/ijgi4020447 |
[14] |
Li X, Lin J Y, Chen Y M, et al. Calibrating cellular automata based on landscape metrics by using genetic algorithms[J]. International Journal of Geographical Information Science, 2013, 27(3):594-613. DOI: 10.1080/13658816.2012.698391
doi: 10.1080/13658816.2012.698391 |
[15] |
Feng Y J, Liu Y, Batty M. Modeling urban growth with GIS based cellular automata and least squares SVM rules: A case study in Qingpu: Songjiang area of Shanghai, China[J]. Stochastic Environmental Research and Risk Assessment, 2016, 30(5):1387-1400. DOI: 10.1007/s00477-015-1128-z
doi: 10.1007/s00477-015-1128-z |
[16] |
Lin J Y, Li X. Simulating urban growth in a metropolitan area based on weighted urban flows by using web search engine[J]. International Journal of Geographical Information Science, 2015, 29(10):1721-1736. DOI: 10.1080/13658816.2015.1034721
doi: 10.1080/13658816.2015.1034721 |
[17] |
Liu X P, Liang X, Li X, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning, 2017, 168:94-116. DOI: 10.1016/j.landurbplan.2017.09.019
doi: 10.1016/j.landurbplan.2017.09.019 |
[18] | 朱寿红, 舒帮荣, 马晓冬, 等. 基于"反规划"理念及FLUS模型的城镇用地增长边界划定研究——以徐州市贾汪区为例[J]. 地理与地理信息科学, 2017, 33(5):80-86. |
[ Zhu S H, Shu B R, Ma X D, et al. The delimitation of urban growth boundary based on the idea of “anti-planning” and FLUS model: A case study of Jiawang district, Xuzhou city[J]. Geography and Geo-Information Science, 2017, 33(5):80-86. ] DOI: 10.3969/j.issn.1672-0504.2017.05.013
doi: 10.3969/j.issn.1672-0504.2017.05.013 |
|
[19] |
Liang X, Liu X P, Li X, et al. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method[J]. Landscape and Urban Planning, 2018, 177:47-63. DOI: 10.1016/j.landurbplan.2018.04.016
doi: 10.1016/j.landurbplan.2018.04.016 |
[20] | 张亚飞, 廖和平, 李义龙. 基于反规划与FLUS模型的城市增长边界划定研究——以重庆市渝北区为例[J]. 长江流域资源与环境, 2019, 28(4):21-31. |
[ Zhang Y F, Liao H P, Li Y L. Delimitaion of urban growth boundary based on anti-planning and FLUS model: A case study of Yubei district, Chongqing, China[J]. Resources and Environment in the Yangtze Basin, 2019, 28(4):21-31. ] DOI: 10.11870/cjlyzyyhj201904003
doi: 10.11870/cjlyzyyhj201904003 |
|
[21] |
Chen Z Z, Huang M, Zhu D Y, et al. Integrating remote sensing and a Markov-FLUS model to simulate future land use changes in Hokkaido, Japan[J]. Remote Sensing, 2021, 13(13):2621. DOI: 10.3390/rs13132621
doi: 10.3390/rs13132621 |
[22] |
Feng D R, Bao W K, Fu M C, et al. Current and future land use characters of a national central city in Eco-Fragile Region: A case study in Xi'an city based on FLUS model[J]. Land, 2021, 10(3):286. DOI: 10.3390/land10030286
doi: 10.3390/land10030286 |
[23] |
Huang Y C, Nian P H, Zhang W X. The prediction of interregional land use differences in Beijing: A Markov model[J]. Environmental Earth Sciences, 2015, 73(8):4077-4090. DOI: 10.1007/s12665-014-3693-8
doi: 10.1007/s12665-014-3693-8 |
[24] |
Yang X, Zheng X Q, Chen R. A land use change model: integrating landscape pattern indexes and Markov-CA[J]. Ecological Modelling, 2014, 283:1-7. DOI: 10.1016/j.ecolmodel.2014.03.011
doi: 10.1016/j.ecolmodel.2014.03.011 |
[25] |
Li X, Chen G Z, Liu X P, et al. A new global land-use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human-environment interactions[J]. Annals of the American Association of Geographers, 2017, 107(5):1040-1059. DOI: 10.1080/24694452.2017.1303357
doi: 10.1080/24694452.2017.1303357 |
[26] |
Chen D S, Zhang Y T, Yao Y, et al. Exploring the spatial differentiation of urbanization on two sides of the Hu Huanyong Line: based on nighttime light data and cellular automata[J]. Applied Geography, 2019, 112:102081. DOI: 10.1016/j.apgeog.2019.102081
doi: 10.1016/j.apgeog.2019.102081 |
[27] |
Jokar Arsanjani J, Helbich M, Kainz W, et al. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21:265-275. DOI: 10.1016/j.jag.2011.12.014
doi: 10.1016/j.jag.2011.12.014 |
[28] |
Lin Y P, Chu H J, Wu C F, et al. Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling: A case study[J]. International Journal of Geographical Information Science, 2011, 25(1):65-87. DOI: 10.1080/13658811003752332
doi: 10.1080/13658811003752332 |
[29] |
Chen Y M, Li X, Liu X P, et al. Capturing the varying effects of driving forces over time for the simulation of urban growth by using survival analysis and cellular automata[J]. Landscape and Urban Planning, 2016, 152:59-71. DOI: 10.1016/j.landurbplan.2016.03.011
doi: 10.1016/j.landurbplan.2016.03.011 |
[30] |
He J L, Li X, Yao Y, et al. Mining transition rules of cellular automata for simulating urban expansion by using the deep learning techniques[J]. International Journal of Geographical Information Science, 2018, 32(10):2076-2097. DOI: 10.1080/13658816.2018.1480783
doi: 10.1080/13658816.2018.1480783 |
[31] | 李秋萍, 刘逸诗, 巩诗瑶, 等. 基于居民出行活动特征的个体经济水平推断方法[J]. 武汉大学学报·信息科学版, 2019, 44(10):1575-1580. |
[ Li Q P, Liu Y S, Gong S Y, et al. Individual income level inference method based on travel behavior of urban residents[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10):1575-1580. ] DOI: 10.13203/j.whugis20170426
doi: 10.13203/j.whugis20170426 |
|
[32] |
Grömping U. Variable importance assessment in regression: linear regression versus random forest[J]. The American Statistician, 2009, 63(4):308-319. DOI: 10.1198/tast.2009.08199
doi: 10.1198/tast.2009.08199 |
[33] | 深圳市统计局, 国家统计局深圳调查队. 深圳统计年鉴[M]. 北京: 中国统计出版社, 2020. |
[ Shenzhen Bureau of Statistics, Shenzhen Survey Team of National Bureau of Statistics. Shenzhen Statistical Yearbook[M]. Beijing: China Statistics Press, 2020. ] | |
[34] |
Yao Y, Li X, Liu X P, et al. Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model[J]. International Journal of Geographical Information Science, 2017, 31(4):825-848. DOI: 10.1080/13658816.2016.1244608
doi: 10.1080/13658816.2016.1244608 |
[35] | 何媛婷, 王石英, 袁再健, 等. 珠江三角洲土地利用变化及其对城市化发展的响应[J]. 生态环境学报, 2020, 29(2):303-310. |
[ He Y T, Wang S Y, Yuan Z J, et al. Land use change and its response to urbanization in the Pearl River Delta[J]. Ecology and Environmental Sciences, 2020, 29(2):303-310. ] DOI: 10.16258/j.cnki.1674-5906.2020.02.011
doi: 10.16258/j.cnki.1674-5906.2020.02.011 |
|
[36] | 王二红, 冯长春, 张爱华. 深圳市建设用地扩展分析[J]. 城市发展研究, 2015, 22(5):38-44. |
[ Wang E H, Feng C C, Zhang A H. Study on Shenzhen construction land expansion[J]. Urban Development Studies, 2015, 22(5):38-44. ] DOI: CNKI:SUN:CSFY.0.2015-05-008
doi: CNKI:SUN:CSFY.0.2015-05-008 |
|
[37] |
Zhang D C, Liu X P, Wu X Y, et al. Multiple intra-urban land use simulations and driving factors analysis: A case study in Huicheng, China[J]. GIScience & Remote Sensing, 2019, 56(2):282-308. DOI: 10.1080/15481603.2018.1507074
doi: 10.1080/15481603.2018.1507074 |
[38] |
Yao Y, Liu X P, Li X, et al. Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata[J]. International Journal of Geographical Information Science, 2017, 31(12):2452-2479. DOI: 10.1080/13658816.2017.13 60494
doi: 10.1080/13658816.2017.13 60494 |
[39] |
Yao Y, Zhang J B, Hong Y, et al. Mapping fine-scale urban housing prices by fusing remotely sensed imagery and social media data[J]. Transactions in GIS, 2018, 22(2):561-581. DOI: 10.1111/tgis.12330
doi: 10.1111/tgis.12330 |
[40] |
姚尧, 任书良, 王君毅, 等. 卷积神经网络和随机森林的城市房价微观尺度制图方法[J]. 地球信息科学学报, 2019, 21(2):168-177.
doi: 10.12082/dqxxkx.2019.180508 |
[ Yao Y, Ren S L, Wang J Y, et al. Mapping the fine-scale housing price distribution by integrating a convolutional neural network and random forest[J]. Journal of Geo-information Science, 2019, 21(2):168-177. ] DOI: 10.12082/dqxxkx.2019.180508
doi: 10.12082/dqxxkx.2019.180508 |
[1] | XING Ziyao, DONG Xinrui, ZAN Xuli, YANG Shuai, HUANG Zihan, LIU Zhe, ZHANG Xiaodong. Flood Inundation Mapping and Estimation using VGI, Remote Sensing Images and Other Multi-source Data [J]. Journal of Geo-information Science, 2023, 25(9): 1869-1881. |
[2] | TAN Deming, RAO Jiayi. Analysis on Influencing Factors of Urban Waterfront Space Vitality in Shenzhen [J]. Journal of Geo-information Science, 2023, 25(4): 809-822. |
[3] | YU Qinping, WU Zhenhua, WANG Yabei. A Land Use Change Simulation Model: Coupling of Evolutionary Algorithm and FLUS Model [J]. Journal of Geo-information Science, 2023, 25(3): 510-528. |
[4] | PAN Yupiao, ZHAO Xiang, WANG Jing, ZHANG Yiqing, LIU Yaolin. Identifying the Class of the Villages based on SMOTE-RF Algorithm [J]. Journal of Geo-information Science, 2023, 25(1): 163-176. |
[5] | YAN Zhaojin, YANG Hui. Harbor Detection based on Multi-Source Data and Semantic Modeling of Ship Stop Trajectory [J]. Journal of Geo-information Science, 2022, 24(9): 1662-1675. |
[6] | ZOU Xinchen, MU Fengyun, WANG Junxiu, CHEN Jiankun, TIAN Tian. Location Advantage of Inland River Ports in the Yangtze River Economic Belt based on Multi-Source Data [J]. Journal of Geo-information Science, 2022, 24(9): 1717-1729. |
[7] | GAO Xuemei, YANG Xuchao, CHEN Bairu, LIN Lin. Spatialization of Population in the Bohai Rim Region Using Random Forest Model [J]. Journal of Geo-information Science, 2022, 24(6): 1150-1162. |
[8] | LI Fuxiang, LIU Dianfeng, KONG Xuesong, LIU Yaolin. Multi-scenario Evaluation of County-scale Development Potential based on Shared Socioeconomic Pathways and Dynamic Simulation Approach [J]. Journal of Geo-information Science, 2022, 24(4): 684-697. |
[9] | DENG Yawen, HOU Peng, JIANG Weiguo, PENG Kaifeng, LI Zhuo, DENG Yue. Automatic Extraction of River Source Region Boundary based on Multi-Characteristic Indexes and Hierarchical Cluster Analysis [J]. Journal of Geo-information Science, 2022, 24(3): 469-482. |
[10] | WU Wanshu, DANG Yuting, ZHAO Kai. Spatial Characteristics of Urban Vitality based on Multi-dimensional Perception [J]. Journal of Geo-information Science, 2022, 24(10): 1867-1882. |
[11] | GUO Changqing, CHI Wenfeng, KUANG Wenhui, DOU Yinyin, FU Shujing, LEL Mei. Mapping and Spatio-temporal Changes Analysis of Energy Mining and Producing Sites in China Using Multi-source Data from 1990 to 2020 [J]. Journal of Geo-information Science, 2022, 24(1): 127-140. |
[12] | DAI Junjie, DONG Jingwen, YANG Shen, SUN Yizhong. Identification Method of Urban Fringe Area based on Spatial Mutation Characteristics [J]. Journal of Geo-information Science, 2021, 23(8): 1401-1421. |
[13] | SUN Dingzhao, LIANG Youjia. Multi-scenario Simulation of Land Use Dynamic in the Loess Plateau using an Improved Markov-CA Model [J]. Journal of Geo-information Science, 2021, 23(5): 825-836. |
[14] | ZHU Shoujie, DU Shihong, LI Jun, SHANG Shuoshuo, DU Shouji. Estimating Population Distribution in Cities and Towns though Fusing Multi-source Spatial Data [J]. Journal of Geo-information Science, 2020, 22(8): 1607-1616. |
[15] | YU Zhuoyuan, LV Guonian, ZHANG Xining, JIA Yuanxin, ZHOU Chenghu, GE Yong, LV Kejing. Pan-information-based High Precision Navigation Map: Concept and Theoretical Model [J]. Journal of Geo-information Science, 2020, 22(4): 760-771. |
|