Journal of Geo-information Science ›› 2022, Vol. 24 ›› Issue (1): 165-175.doi: 10.12082/dqxxkx.2022.210655
Previous Articles Next Articles
OU Geng1,2(), ZHOU Liangchen1,2, LIN Bingxian1,2, WANG Yang3, ZHOU Haiyang3, LV Guonian1,2,*(
)
Received:
2021-10-21
Revised:
2021-11-10
Online:
2022-01-25
Published:
2022-03-25
Contact:
LV Guonian
E-mail:ougeng@foxmail.com;gnlu@njnu.edu.cn
Supported by:
OU Geng, ZHOU Liangchen, LIN Bingxian, WANG Yang, ZHOU Haiyang, LV Guonian. Effectiveness Evaluation Method of Tower-based Remote Sensing Videos[J].Journal of Geo-information Science, 2022, 24(1): 165-175.DOI:10.12082/dqxxkx.2022.210655
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
Occlusion statistics of the experimental camera
相机编号 | 实际覆盖占比/% | 自遮挡角度/° | 自遮挡盲区占比/% | 地形遮挡盲区占比/% | 主要遮挡物类型 |
---|---|---|---|---|---|
A | 2.84 | 66.57 | 18.49 | 78.67 | 山体 |
B | 4.69 | 165.84 | 46.07 | 49.24 | 塔基、建筑、树木 |
C | 3.53 | 255.16 | 70.88 | 25.59 | 塔基 |
D | 3.02 | 179.17 | 49.77 | 47.21 | 塔基、山体、建筑 |
E | 1.90 | 191.05 | 53.07 | 45.03 | 塔基、密集建筑 |
平均 | 3.20 | 171.56 | 47.66 | 49.14 |
[1] | 高添, 于立忠, 于丰源, 等. 中国科学院清原森林生态系统观测研究站塔群平台的功能和应用[J]. 应用生态学报, 2020, 31(3):695-705. |
[ Gao T A, Yu L Z, Yu F Y, et al. Functions and applications of multi-tower platform of Qingyuan forest ecosystem research station of Chinese academy of sciences[J]. Chinese Journal of Applied Ecology, 2020, 31(3):695-705. ] DOI: 10.13287/j.1001-9332.202003.040
doi: 10.13287/j.1001-9332.202003.040 |
|
[2] |
Fukumoto R, Borlongan I A, Nishihara G N, et al. Effect of photosynthetically active radiation and temperature on the photosynjournal of two heteromorphic life history stages of a temperate edible brown alga, Cladosiphon umezakii (Chordariaceae, Ectocarpales), from Japan[J]. Journal of Applied Phycology, 2019, 31(2):1259-1270. DOI: 10.1007/s10811-018-1655-3
doi: 10.1007/s10811-018-1655-3 |
[3] | 李朝晖, 张永光, 张乾, 等. 植被冠层日光诱导叶绿素荧光塔基自动观测方法及系统介绍[J]. 遥感学报, 2021, 25(5):1152-1168. |
[ Li Z H, Zhang Y G, Zhang Q A, et al. Tower-based automatic observation methods and systems of solar-induced chlorophyll fluorescence in vegetation canopy[J]. National Remote Sensing Bulletin, 2021, 25(5):1152-1168. ] DOI: 10.11834/jrs.20210254
doi: 10.11834/jrs.20210254 |
|
[4] |
Paul-Limoges E, Damm A, Hueni A, et al. Effect of environmental conditions on Sun-induced fluorescence in a mixed forest and a cropland[J]. Remote Sensing of Environment, 2018, 219:310-323. DOI: 10.1016/j.rse.2018.10.018
doi: 10.1016/j.rse.2018.10.018 |
[5] |
Xi Y, Jianwu T, John F, et al. Solar-induced chlorophyll fluorescence that correlates with canopy photosynjournal on diurnal and seasonal scales in a temperate deciduous forest[J]. Geophysical Research Letters, 2015, 42(8):2977-2987. DOI: 10.1002/2015GL063201
doi: 10.1002/2015GL063201 |
[6] |
de Moura Y M, Galvão L S, Hilker T, et al. Spectral analysis of Amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131:52-64. DOI: 10.1016/j.isprsjprs.2017.07.006
doi: 10.1016/j.isprsjprs.2017.07.006 |
[7] |
Wu J, Albert L P, Lopes A P, et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests[J]. Science, 2016, 351(6276):972-976. DOI: 10.1126/science.aad5068
doi: 10.1126/science.aad5068 |
[8] |
Lopes A P, Nelson B W, Wu J, et al. Leaf flush drives dry season green-up of the Central Amazon[J]. Remote Sensing of Environment, 2016, 182:90-98. DOI: 10.1016/j.rse.2016.05.009
doi: 10.1016/j.rse.2016.05.009 |
[9] |
Richardson A D, Anderson R S, Arain M A, et al. Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synjournal[J]. Global Change Biology, 2012, 18(2):566-584. DOI: 10.1111/j.1365-2486.2011.02562.x
doi: 10.1111/j.1365-2486.2011.02562.x |
[10] |
Hilker T, Leeuwen M, Coops N C, et al. Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand[J]. Trees, 2010, 24(5):819-832. DOI: 10.1007/s00468-010-0452-7
doi: 10.1007/s00468-010-0452-7 |
[11] |
Tortini R, Hilker T, Coops N C, et al. Technological advancement in tower-based canopy reflectance monitoring: The AMSPEC-III system[J]. Sensors (Basel, Switzerland), 2015, 15(12):32020-32030. DOI: 10.3390/s151229906
doi: 10.3390/s151229906 |
[12] |
Eklundh L, Jin H X, Schubert P, et al. An optical sensor network for vegetation phenology monitoring and satellite data calibration[J]. Sensors (Basel, Switzerland), 2011, 11(8):7678-7709. DOI: 10.3390/s110807678
doi: 10.3390/s110807678 |
[13] | 郭健, 刘良云, 刘新杰, 等. 基于查找表的塔基平台O2-A波段大气校正方法研究[J]. 遥感技术与应用, 2019, 34(3):467-475. |
[ Guo J A, Liu L Y, Liu X J, et al. An O2-A band atmospheric correction algorithm for tower-based platform based on look-up table[J]. Remote Sensing Technology and Application, 2019, 34(3):467-475. ] DOI: 10.11873/j.issn.1004-0323.2019.3.0467
doi: 10.11873/j.issn.1004-0323.2019.3.0467 |
|
[14] | 冯笑雨. 基于塔基监控图像的建设施工用地识别与空间定位方法研究[D]. 南京:南京师范大学, 2019. |
[ Feng X Y. Research on recognition and spatial location method of construction land based on tower-based monitoring image[D]. Nanjing: Nanjing Normal University, 2019. ] DOI: 10.27245/d.cnki.gnjsu.2019.000671
doi: 10.27245/d.cnki.gnjsu.2019.000671 |
|
[15] | 方陆明, 柴红玲, 唐丽华, 等. 基于DEM的视频可视域提取算法[J]. 北京林业大学学报, 2010, 32(3):27-32. |
[ Fang L M, Chai H L, Tang L H, et al. An extraction algorithm of a DEM based video visualization domain[J]. Journal of Beijing Forestry University, 2010, 32(3):27-32. ] DOI: 10.13332/j.1000-1522.2010.03.033
doi: 10.13332/j.1000-1522.2010.03.033 |
|
[16] |
Yaagoubi R, Yarmani M, Kamel A, et al. HybVOR: A voronoi-based 3D GIS approach for camera surveillance network placement[J]. ISPRS International Journal of Geo-Information, 2015, 4(2):754-782. DOI: 10.3390/ijgi4020754
doi: 10.3390/ijgi4020754 |
[17] |
Wang M Z, Liu X J, Zhang Y N, et al. Camera coverage estimation based on multistage grid subdivision[J]. ISPRS International Journal of Geo-Information, 2017, 6(4):110. DOI: 10.3390/ijgi6040110
doi: 10.3390/ijgi6040110 |
[18] |
Yao Y, Chen C H, Abidi B, et al. Sensor planning for automated and persistent object tracking with multiple cameras[C]// 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008:1-8. DOI: 10.1109/CVPR.2008.4587515
doi: 10.1109/CVPR.2008.4587515 |
[19] | Malik R, Bajcsy P. Automated placement of multiple stereo cameras[C]. The 8th Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras OMNIVIS, Marseille, France, 2008. |
[20] |
Ahamed T, Tian L, Jiang Y S, et al. Tower remote-sensing system for monitoring energy crops; image acquisition and geometric corrections[J]. Biosystems Engineering, 2012, 112(2):93-107. DOI: 10.1016/j.biosysteseng.2012.03.003
doi: 10.1016/j.biosysteseng.2012.03.003 |
[21] | 明冬萍, 王群, 杨建宇. 遥感影像空间尺度特性与最佳空间分辨率选择[J]. 遥感学报, 2008, 12(4):529-537. |
[ Ming D P, Wang Q, Yang J Y. Spatial scale of remote sensing image and selection of optimal spatial resolution[J]. Journal of Remote Sensing, 2008, 12(4):529-537. ] | |
[22] |
Chen H, Pontius R G. Sensitivity of a land change model to pixel resolution and precision of the independent variable[J]. Environmental Modeling & Assessment, 2011, 16(1):37-52. DOI: 10.1007/s10666-010-9233-3
doi: 10.1007/s10666-010-9233-3 |
[23] | Markham B, Townshend J R G. Land cover classification accuracy as a function of sensor spatial resolution[C]. Proceedings 15th international symponsium on remote sensing of environment, Ann Arbor, Michigan, 1981. |
[24] |
Li F Q, Kustas W P, Anderson M C, et al. Effect of remote sensing spatial resolution on interpreting tower-based flux observations[J]. Remote Sensing of Environment, 2008, 112(2):337-349. DOI: 10.1016/j.rse.2006.11.032
doi: 10.1016/j.rse.2006.11.032 |
[25] |
Waldner F, Defourny P. Where can pixel counting area estimates meet user-defined accuracy requirements?[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 60:1-10. DOI: 10.1016/j.jag.2017.03.014
doi: 10.1016/j.jag.2017.03.014 |
No related articles found! |
|