Journal of Geo-information Science ›› 2023, Vol. 25 ›› Issue (5): 953-966.doi: 10.12082/dqxxkx.2023.220567
Previous Articles Next Articles
LIN Xuanxin1,2(), XIAO Guirong1,2,*(
), ZHOU Houbo3,4
Received:
2022-08-03
Revised:
2022-11-15
Online:
2023-05-25
Published:
2023-04-27
Contact:
XIAO Guirong
E-mail:linxuanxin0928@163.com;xiaogr@fzu.edu.cn
Supported by:
LIN Xuanxin, XIAO Guirong, ZHOU Houbo. Landslide Susceptibility Assessment Method Considering Land Use Dynamic Change[J].Journal of Geo-information Science, 2023, 25(5): 953-966.DOI:10.12082/dqxxkx.2023.220567
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Data source and data type
基础数据 | 数据来源 | 数据类型 | 数据年份 | 分辨率 |
---|---|---|---|---|
滑坡空间分布数据 | 资源环境科学与数据中心 ( | 矢量 | 积累至2019年 | — |
数字高程影像 | ASTER Global Digital Elevation Model V003 ( | 栅格 | 成像时间为2000年3月1日—2013年11月30日 | 30 m×30 m |
自然地理数据 | 全国地理信息资源目录服务系统1:100万全国基础地理数据库 ( | 矢量 | 2021年 | — |
地形数据 | 从数字高程影像中提取 | 栅格 | — | 30 m×30 m |
降水量数据 | 温室数据共享平台( | 文本 | 2000—2019年 | — |
地质数据 | 地质科学数据出版系统1:100万福建省地质图数据 ( | 矢量 | 2017年 | — |
土地利用类型数据 | 1990—2021年中国30 m年土地覆被数据集及其动态( | 栅格 | 2000—2020年 | 30 m×30 m |
Tab. 2
Results of factor correlation calculation
评估因子 | 高程 | 坡度 | 坡向 | 降水量 | 工程地 质岩组 | 到断裂距离 | 到水系距离 | 到道路距离 | 20年土地 利用变化 |
---|---|---|---|---|---|---|---|---|---|
高程 | 1.0000 | 0.2510 | 0.0227 | 0.2012 | -0.0861 | 0.1866 | 0.2701 | 0.3308 | -0.2536 |
坡度 | 0.2510 | 1.0000 | 0.0363 | 0.0839 | -0.0454 | 0.0378 | 0.0909 | 0.1345 | -0.2725 |
坡向 | 0.0227 | 0.0363 | 1.0000 | 0.0047 | -0.0061 | -0.0003 | 0.0044 | 0.0083 | -0.0182 |
降水量 | 0.2012 | 0.0839 | 0.0047 | 1.0000 | 0.1787 | 0.0899 | 0.0442 | -0.0158 | -0.0096 |
工程地质岩组 | -0.0861 | -0.0454 | -0.0061 | 0.1787 | 1.0000 | -0.1616 | -0.0917 | -0.0578 | 0.0961 |
到断裂距离 | 0.1866 | 0.0378 | -0.0003 | 0.0899 | -0.1616 | 1.0000 | 0.0607 | 0.1026 | -0.0529 |
到水系距离 | 0.2701 | 0.0909 | 0.0044 | 0.0442 | -0.0917 | 0.0607 | 1.0000 | 0.1630 | -0.1508 |
到道路距离 | 0.3308 | 0.1345 | 0.0083 | -0.0158 | -0.0578 | 0.1026 | 0.1630 | 1.0000 | -0.1626 |
20年土地利用变化 | -0.2536 | -0.2725 | -0.0182 | -0.0096 | 0.0961 | -0.0529 | -0.1508 | -0.1626 | 1.0000 |
Tab. 6
Model parameter settings
预测模型 | 主要参数 | 搜索范围 | 搜索步长 | 最优结果 |
---|---|---|---|---|
DT | max_depth | [2,10] | 2 | 6 |
max_features | [2,8] | 1 | 6 | |
max_leaf_nodes | [2,8] | 1 | 7 | |
GBDT | n_estimators | [20,300] | 20 | 300 |
max_depth | [2,10] | 2 | 6 | |
max_features | [2,8] | 1 | 8 | |
max_leaf_nodes | [2,8] | 1 | 7 | |
RF | max_depth | [2,10] | 2 | 10 |
max_features | [2,8] | 1 | 5 | |
n_estimators | [20,300] | 20 | 280 |
[1] |
杨城, 林广发, 张明锋, 等. 基于DEM的福建省土质滑坡敏感性评价[J]. 地球信息科学学报, 2016, 18(12):1624-1633.
doi: 10.3724/SP.J.1047.2016.01624 |
[ Yang C, Lin G F, Zhang M F, et al. Soil landslide susceptibility assessment based on DEM[J]. Journal of Geo-Information Science, 2016, 18(12):1624-1633. ] DOI:10.3724/SP.J.1047.2016.01624
doi: 10.3724/SP.J.1047.2016.01624 |
|
[2] | 黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 2018, 37(1):156-167. |
[ Huang F M, Yin K L, Jiang S H, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1):156-167. ] DOI:10.13722/j.cnki.jrme.2017.0824
doi: 10.13722/j.cnki.jrme.2017.0824 |
|
[3] | 黄发明, 陈佳武, 唐志鹏, 等. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性[J]. 岩石力学与工程学报, 2021, 40(6):1155-1169. |
[ Huang F M, Chen J W, Tang Z P, et al. Uncertainties of landslide susceptibility prediction due to different spatial resolutions and different proportions of training and testing datasets[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6):1155-1169. ] DOI:10.13722/j.cnki.jrme.2020.1119
doi: 10.13722/j.cnki.jrme.2020.1119 |
|
[4] | 刘艳辉, 方然可, 苏永超, 等. 基于机器学习的区域滑坡灾害预警模型研究[J]. 工程地质学报, 2021, 29(1):116-124. |
[ Liu Y H, Fang R K, Su Y C, et al. Machine learning based model for warning of regional landslide disasters[J]. Journal of Engineering Geology, 2021, 29(1):116-124. ] DOI:10.13544/j.cnki.jeg.2020-533
doi: 10.13544/j.cnki.jeg.2020-533 |
|
[5] |
Dou J, Yunus A P, Tien B D, et al. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan[J]. Science of the Total Environment, 2019, 662:332-346. DOI:10.1016/j.scitotenv.2019.01.221
doi: 10.1016/j.scitotenv.2019.01.221 |
[6] |
Liu Z Q, Gilbert G, Cepeda J M, et al. Modelling of shallow landslides with machine learning algorithms[J]. Geoscience Frontiers, 2021, 12(1):385-393. DOI:10.1016/j.gsf.2020.04.014
doi: 10.1016/j.gsf.2020.04.014 |
[7] |
Pham B T, Pradhan B, Tien B D, et al. A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India)[J]. Environmental Modelling & Software, 2016, 84:240-250. DOI:10.1016/j.envsoft.2016.07.005
doi: 10.1016/j.envsoft.2016.07.005 |
[8] | 张洪吉, 赵铮, 陈建华, 等. 面向滑坡危险性评价的深度一维卷积神经网络方法——以四川省芦山县为例[J]. 自然灾害学报, 2021, 30(3):191-198. |
[ Zhang H J, Zhao Z, Chen J H, et al. A deep one-dimensional convolutional neural network method for landslide risk assessment: A case study in Lushan, Sichuan, China[J]. Journal of Natural Disasters, 2021, 30(3):191-198. ] DOI:10.13577/j.jnd.2021.0321
doi: 10.13577/j.jnd.2021.0321 |
|
[9] |
Wang D, Hao M M, Chen S, et al. Assessment of landslide susceptibility and risk factors in China[J]. Natural Hazards, 2021, 108(3):3045-3059. DOI:10.1007/s11069-021-04812-8
doi: 10.1007/s11069-021-04812-8 |
[10] |
Sur U, Singh P, Meena S R. Landslide susceptibility assessment in a lesser Himalayan Road corridor (India) applying fuzzy AHP technique and earth-observation data[J]. Geomatics, Natural Hazards and Risk, 2020, 11(1):2176-2209. DOI:10.1080/19475705.2020.1836038
doi: 10.1080/19475705.2020.1836038 |
[11] | 纪秋磊, 梁伟, 傅伯杰, 等. 基于Google Earth Engine平台与复杂网络的黄河流域土地利用/覆被变化分析[J]. 生态学报, 2022, 42(6):2122-2135. |
[ Ji Q L, Liang W, Fu B J, et al. Land use/cover change in the Yellow River Basin based on Google Earth Engine and complex network[J]. Acta Ecologica Sinica, 2022, 42(6):2122-2135. ] | |
[12] | 王思, 张路路, 林伟彪, 等. 基于MODIS-归一化植被指数的广东省植被覆盖与土地利用变化研究[J]. 生态学报, 2022, 42(6):2149-2163. |
[ Wang S, Zhang L L, Lin W B, et al. Study on vegetation coverage and land-use change of Guangdong Province based on MODIS-NDVI[J]. Acta Ecologica Sinica, 2022, 42(6):2149-2163. ] DOI:10.5846/stxb202104261100
doi: 10.5846/stxb202104261100 |
|
[13] | 乔治, 蒋玉颖, 贺曈, 等. 土地利用变化模拟研究进展[J]. 生态学报, 2022(13):5165-5176. |
[ Qiao Z, Jiang Y Y, He T, et al. Land use change simulation: Progress, challenges, and prospects[J]. Acta Ecologica Sinica, 2022(13):5165-5176. ] | |
[14] |
Pisano L, Zumpano V, Malek Ž, et al. Variations in the susceptibility to landslides, as a consequence of land cover changes: A look to the past, and another towards the future[J]. Science of the Total Environment, 2017, 601/602:1147-1159. DOI:10.1016/j.scitotenv.2017.05.231
doi: 10.1016/j.scitotenv.2017.05.231 |
[15] |
Chen L X, Guo Z Z, Yin K L, et al. The influence of land use and land cover change on landslide susceptibility: A case study in Zhushan Town, Xuan'en County (Hubei, China)[J]. Natural Hazards and Earth System Sciences, 2019, 19(10):2207-2228. DOI:10.5194/nhess-19-2207-2019
doi: 10.5194/nhess-19-2207-2019 |
[16] |
Liu J, Wu Z, Zhang H W. Analysis of changes in landslide susceptibility according to land use over 38 years in Lixian County, China[J]. Sustainability, 2021, 13(19):10858. DOI:10.3390/su131910858
doi: 10.3390/su131910858 |
[17] |
Persichillo M G, Bordoni M, Meisina C. The role of land use changes in the distribution of shallow landslides[J]. Science of the Total Environment, 2017, 574:924-937. DOI:10.1016/j.scitotenv.2016.09.125
doi: 10.1016/j.scitotenv.2016.09.125 |
[18] |
Reichenbach P, Busca C, Mondini A C, et al. The influence of land use change on landslide susceptibility zonation: The briga catchment test site (Messina, Italy)[J]. Environmental Management, 2014, 54(6):1372-1384. DOI:10.1007/s00267-014-0357-0
doi: 10.1007/s00267-014-0357-0 pmid: 25164982 |
[19] | 叶润青, 李士垚, 郭飞, 等. 基于RS和GIS的三峡库区滑坡易发程度与土地利用变化的关系研究[J]. 工程地质学报, 2021, 29(3):724-733. |
[ Ye R Q, Li S Y, Guo F, et al. RS and GIS analysis on relationship between landslide susceptibility and land use change in Three Gorges Reservoir area[J]. Journal of Engineering Geology, 2021, 29(3):724-733. ] DOI:10.13544/j.cnki.jeg.2020-076
doi: 10.13544/j.cnki.jeg.2020-076 |
|
[20] |
Rabby Y W, Li Y K, Abedin J, et al. Impact of land use/land cover change on landslide susceptibility in rangamati municipality of rangamati district, Bangladesh[J]. ISPRS International Journal of Geo-Information, 2022, 11(2):89. DOI:10.3390/ijgi11020089
doi: 10.3390/ijgi11020089 |
[21] |
Sur U, Singh P, Rai P K, et al. Landslide probability mapping by considering fuzzy numerical risk factor (FNRF) and landscape change for road corridor of Uttarakhand, India[J]. Environment, Development and Sustainability, 2021, 23(9):13526-13554. DOI:10.1007/s10668-021-01226-1
doi: 10.1007/s10668-021-01226-1 |
[22] |
Bourenane H, Bouhadad Y. Impact of land use changes on landslides occurrence in urban area: The case of the constantine city (NE Algeria)[J]. Geotechnical and Geological Engineering, 2021, 39(6):1-21. DOI:10.1007/s10706-021-01768-1
doi: 10.1007/s10706-021-01768-1 |
[23] |
Soma A S, Kubota T, Aditian A. Comparative study of land use change and landslide susceptibility using frequency ratio, certainty factor, and logistic regression in upper area of Ujung-loe watersheds south Sulawesi Indonesia[J]. International Journal of Erosion Control Engineering, 2019, 11(4):103-115. DOI:10.13101/ijece.11.103
doi: 10.13101/ijece.11.103 |
[24] |
李远远, 梅红波, 任晓杰, 等. 基于确定性系数和支持向量机的地质灾害易发性评价[J]. 地球信息科学学报, 2018, 20(12):1699-1709.
doi: 10.12082/dqxxkx.2018.180349 |
[ Li Y Y, Mei H B, Ren X J, et al. Geological disaster susceptibility evaluation based on certainty factor and support vector machine[J]. Journal of Geo-Information Science, 2018, 20(12):1699-1709. ] DOI:10.12082/dqxxkx.2018.180349
doi: 10.12082/dqxxkx.2018.180349 |
|
[25] | 许冲, 戴福初, 姚鑫, 等. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J]. 岩石力学与工程学报, 2009, 28(S2):3978-3985. |
[ Xu C, Dai F C, Yao X, et al. GIS-based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2):3978-3985. ] | |
[26] | 许冲, 戴福初, 姚鑫, 等. 基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J]. 工程地质学报, 2010, 18(1):15-26. |
[ Xu C, Dai F C, Yao X, et al. GIS platform and certainty factor analysis method based Wenchuan earthquake-induced landslide susceptibility evaluation[J]. Journal of Engineering Geology, 2010, 18(1):15-26. ] | |
[27] | 杨华阳, 许向宁, 杨鸿发. 基于证据权法的九寨沟地震滑坡危险性评价[J]. 中国地质灾害与防治学报, 2020, 31(3):20-29. |
[ Yang H Y, Xu X N, Yang H F. The Jiuzhaigou co-seismic landslide hazard assessment based on weight of evidence method[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3):20-29. ] DOI:10.16031/j.cnki.issn.1003-8035.2020.03.03
doi: 10.16031/j.cnki.issn.1003-8035.2020.03.03 |
|
[28] | 张俊, 殷坤龙, 王佳佳, 等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报, 2016, 35(2):284-296. |
[ Zhang J, Yin K L, Wang J J, et al. Evaluation of landslide susceptibility for Wanzhou District of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2):284-296. ] DOI:10.13722/j.cnki.jrme.2015.0318
doi: 10.13722/j.cnki.jrme.2015.0318 |
|
[29] |
田乃满, 兰恒星, 伍宇明, 等. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比[J]. 地球信息科学学报, 2020, 22(12):2304-2316.
doi: 10.12082/dqxxkx.2020.190766 |
[ Tian N M, Lan H X, Wu Y M, et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-Information Science, 2020, 22(12):2304-2316. ] | |
[30] |
Pourghasemi H R, Sadhasivam N, Amiri M, et al. Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques[J]. Natural Hazards, 2021, 108(1):1291-1316. DOI:10.1007/s11069-021-04732-7
doi: 10.1007/s11069-021-04732-7 |
[31] |
Wei A H, Yu K N, Dai F G, et al. Application of tree-based ensemble models to landslide susceptibility mapping: A comparative study[J]. Sustainability, 2022, 14(10):6330. DOI:10.3390/su14106330
doi: 10.3390/su14106330 |
[32] | 王世宝, 庄建琦, 樊宏宇, 等. 基于频率比与集成学习的滑坡易发性评价——以金沙江上游巴塘—德格河段为例[J]. 工程地质学报, 2022, 30(3):817-828. |
[ Wang S B, Zhuang J Q, Fan H Y, et al. Evaluation of landslide susceptibility based on frequency ratio and ensemble learning—Taking the Batang-Dege section in the upstream of Jinsha River as an example[J]. Journal of Engineering Geology, 2022, 30(3):817-828. ] DOI:10.13544/j.cnki.jeg.2020-639
doi: 10.13544/j.cnki.jeg.2020-639 |
|
[33] | 梁柱. 机器学习在浅层滑坡敏感性评价中的综合应用与研究[D]. 长春: 吉林大学, 2021. |
[ Liang Z. Comprehensive application and study of machine learning in susceptibility evaluation of shallow landslides[D]. Changchun: Jilin University, 2021. ] | |
[34] |
牛全福, 冯尊斌, 党星海, 等. 黄土区滑坡研究中地形因子的选取与适宜性分析[J]. 地球信息科学学报, 2017, 19(12):1584-1592.
doi: 10.3724/SP.J.1047.2017.01584 |
[ Niu Q F, Feng Z B, Dang X H, et al. Suitability analysis of topographic factors in loess landslide research[J]. Journal of Geo-Information Science, 2017, 19(12):1584-1592. ] | |
[35] |
王毅, 方志策, 牛瑞卿, 等. 基于深度学习的滑坡灾害易发性分析[J]. 地球信息科学学报, 2021, 23(12):2244-2260.
doi: 10.12082/dqxxkx.2021.210057 |
[ Wang Y, Fang Z C, Niu R Q, et al. Landslide susceptibility analysis based on deep learning[J]. Journal of Geo-Information Science, 2021, 23(12):2244-2260. ] | |
[36] | 梁杰, 陈嘉豪, 张雪芹, 等. 基于独热编码和卷积神经网络的异常检测[J]. 清华大学学报(自然科学版), 2019, 59(7):523-529. |
[ Liang J, Chen J H, Zhang X Q, et al. One-hot encoding and convolutional neural network based anomaly detection[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(7):523-529. ] DOI:10.16511/j.cnki.qhdxxb.2018.25.061
doi: 10.16511/j.cnki.qhdxxb.2018.25.061 |
|
[37] |
Swets J A. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240(4857):1285-1293. DOI:10.1126/science.3287615
doi: 10.1126/science.3287615 pmid: 3287615 |
[38] | 郭子正, 殷坤龙, 黄发明, 等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2019, 38(2):287-300. |
[ Guo Z Z, Yin K L, Huang F M, et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2):287-300. ] DOI:10.13722/j.cnki.jrme.2018.0838
doi: 10.13722/j.cnki.jrme.2018.0838 |
|
[39] |
Friedman J H. Greedy function approximation: A gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5):1189-1232. DOI:10.1214/aos/1013203451
doi: 10.1214/aos/1013203451 |
[40] | 宋英旭. 基于空天地一体化监测的滑坡风险动态评价研究[D]. 武汉: 中国地质大学, 2019. |
[ Song Y X. Dynamic evaluation of landslide risk based on integrated monitoring of satellite, airborne and ground-based data[D]. Wuhan: China University of Geosciences, 2019. ] | |
[41] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32. DOI:10.1023/A:1010933404324
doi: 10.1023/A:1010933404324 |
[42] | 吴润泽, 胡旭东, 梅红波, 等. 基于随机森林的滑坡空间易发性评价:以三峡库区湖北段为例[J]. 地球科学, 2021, 46(1):321-330. |
[ Wu R Z, Hu X D, Mei H B, et al. Spatial susceptibility assessment of landslides based on random forest: A case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science, 2021, 46(1):321-330. ] | |
[43] | 韦德光, 揭育金, 黄廷淦. 福建省区域地质构造特征[J]. 中国区域地质, 1997, 16(2):162-170. |
[ Wei D G, Jie Y J, Huang T G. Regional geological structure of Fujian[J]. Regional Geology of China, 1997, 16(2):162-170. ] | |
[44] | 中华人民共和国住房和城乡建设部. 工程岩体分级标准:GB/T 50218—2014: 北京: 中国计划出版社, 2015. |
[ Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB/T 50218—2014[S]. Beijing: China Planning Press, 2015. ] | |
[45] |
周侯伯, 肖桂荣, 林炫歆, 等. 基于特征筛选与差分进化算法优化的滑坡危险性评估方法[J]. 地球信息科学学报, 2022, 24(12):2373-2388.
doi: 10.12082/dqxxkx.2022.220158 |
[ Zhou H B, Xiao G R, Lin X X, et al. Landslide hazard assessment method based on feature screening and differential evolutionalgorithm optimization[J]. Journal of Geo-information Science, 2022, 24(12):2373-2388. ] DOI:10.12082/dqxxkx.2022.220158
doi: 10.12082/dqxxkx.2022.220158 |
[1] | LI Yujie, JIANG Hong, LIU Xuanguang. Simulation of Vegetation Gross Primary Productivity and Its Application in Fujian Province of China Using Remote Sensing and CatBoost Algorithm [J]. Journal of Geo-information Science, 2023, 25(9): 1908-1922. |
[2] | ZHOU Chao, GAN Lulu, WANG Yue, WU Hongyang, YU Jin, CAO Ying, YIN Kunlong. Landslide Susceptibility Prediction based on Non-Landslide Samples Selection and Heterogeneous Ensemble Machine Learning [J]. Journal of Geo-information Science, 2023, 25(8): 1570-1585. |
[3] | CAO Yu, FANG Xiuqin, YANG Lulu, JIANG Xinyuan, LIAO Meiyu, REN Liliang. Downscaling of CCI Soil Moisture in the Xiliaohe River Basin based on Random Forest [J]. Journal of Geo-information Science, 2023, 25(8): 1669-1681. |
[4] | YU Qinping, WU Zhenhua, WANG Yabei. A Land Use Change Simulation Model: Coupling of Evolutionary Algorithm and FLUS Model [J]. Journal of Geo-information Science, 2023, 25(3): 510-528. |
[5] | QIN Xiaowei, CHENG Bo, YANG Zhiping, LI Lin, DONG Wen, ZHANG Xin, YANG Shuwen, JIN Zongyi, XUE Qing. Identification of Parcel-Scale Crop Types in Southwestern Mountainous Area based on Time Series Remote Sensing Images [J]. Journal of Geo-information Science, 2023, 25(3): 654-668. |
[6] | HUANG Shuaiyuan, DONG Youfu, LI Haipeng. Establishment and Comparative Analysis of SRTM1 DEM Error Correction Model in the Loess Plateau [J]. Journal of Geo-information Science, 2023, 25(3): 669-681. |
[7] | JIANG Weijie, ZAHNG Chunju, XU Bing, LUO Chenchen, ZHOU Han, ZHOU Kang. AED-Net: Semantic Segmentation Model for Landslide Recognition from Remote Sensing Images [J]. Journal of Geo-information Science, 2023, 25(10): 2012-2025. |
[8] | DU Shukun, ZHANG Jing, HAN Zhijun, GONG Maoyu. Armed Conflict Risk Prediction and Influencing Factors Analysis Based on the Random Forest Model at the Grid-month Scale: A Case Study of Indochina Peninsula [J]. Journal of Geo-information Science, 2023, 25(10): 2026-2038. |
[9] | WEI Guanjun, GAO Maoning. Particle Filter Data Assimilation Method for Loess Landslide Risk Assessment Combined with TRIGRS Model [J]. Journal of Geo-information Science, 2023, 25(10): 2084-2092. |
[10] | PAN Yupiao, ZHAO Xiang, WANG Jing, ZHANG Yiqing, LIU Yaolin. Identifying the Class of the Villages based on SMOTE-RF Algorithm [J]. Journal of Geo-information Science, 2023, 25(1): 163-176. |
[11] | LIN Qigen, WANG Leibin, ZHANG Jiahui. Assessment of the Rainfall-Induced Landslide Hazard and Population Exposure in China under 1.5 ℃ and 2.0 ℃ Global Warming Scenarios [J]. Journal of Geo-information Science, 2023, 25(1): 177-189. |
[12] | YANG Yang, SHAO Zheping, ZHAO Qiang, PAN Jiacai, HU Yu, MEI Qiang. Geographical Spatial Distribution and Risk Prediction of Maritime Traffic Accidents in Port of Xiamen [J]. Journal of Geo-information Science, 2022, 24(9): 1676-1687. |
[13] | WU Yanan, GUO Chang'en, YU Dongping, DUAN Aimin, Liu Yu, DONG Shiwei, SHAN Dongfang, WU Naiming, LI Xican. Spatial Stratification and Evaluation Method of Remote Sensing Classification based on Uncertainty Analysis [J]. Journal of Geo-information Science, 2022, 24(9): 1803-1816. |
[14] | NIE Xiangqin, CHEN Hanyue, NIU Zheng, ZHANG Liming, LIU Wei, XING Shihe, FAN Xieyu, LI JiaGuo. Digital SOC Mapping in Croplands Using Agricultural Activity Factors Derived from Time-Series Data in Western Fujian [J]. Journal of Geo-information Science, 2022, 24(9): 1835-1852. |
[15] | GAO Wei, TU Wei, LI Mingxiao, FANG Bichen, CHEN Dongsheng, HUANG Zhengdong, HE Biao. Synergistic Simulation of Land and Population in Metropolitan Area With Dynamic Influence Factors [J]. Journal of Geo-information Science, 2022, 24(8): 1502-1511. |
|