Journal of Geo-information Science ›› 2023, Vol. 25 ›› Issue (5): 967-981.doi: 10.12082/dqxxkx.2023.220589
Previous Articles Next Articles
WANG Zhenjuan(), HUA Weihua(
), LIU Xiuguo, ZHENG Peng, XIAO Yini, WEN Long
Received:
2022-08-14
Revised:
2022-10-14
Online:
2023-05-25
Published:
2023-04-27
Contact:
HUA Weihua
E-mail:wangzhenj1123@163.com;huaweihua@cug.edu.cn
Supported by:
WANG Zhenjuan, HUA Weihua, LIU Xiuguo, ZHENG Peng, XIAO Yini, WEN Long. An Edge-locking LOD Method for Eliminating Boundary Cracks in 3D Geological Models[J].Journal of Geo-information Science, 2023, 25(5): 967-981.DOI:10.12082/dqxxkx.2023.220589
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
A模型 | B模型 | A模型 | B模型 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
集群数 | 集群组数 | 集群数 | 集群组数 | 集群数 | 集群组数 | 集群数 | 集群组数 | ||||
LOD 0 | 8184 | 411 | 20799 | 1046 | LOD 9 | 20 | 1 | 52 | 3 | ||
LOD 1 | 4173 | 209 | 10599 | 526 | LOD 10 | 10 | 1 | 27 | 5 | ||
LOD 2 | 2129 | 106 | 5434 | 271 | LOD 11 | 5 | 1 | 14 | 1 | ||
LOD 3 | 1090 | 55 | 2785 | 138 | LOD 12 | 3 | 1 | 6 | 1 | ||
LOD 4 | 558 | 28 | 1424 | 71 | LOD 13 | 2 | 1 | 3 | 1 | ||
LOD 5 | 284 | 14 | 733 | 37 | LOD 14 | 1 | 1 | 2 | 1 | ||
LOD 6 | 144 | 7 | 377 | 19 | LOD 15 | - | - | 1 | 1 | ||
LOD 7 | 74 | 4 | 193 | 10 | 合计 | 16 715 | 842 | 42 548 | 2136 | ||
LOD 8 | 38 | 2 | 99 | 5 |
Tab. 2
Statistics for rendering LOD
LOD级别 | 三角网格数量/个 | 简化率/% | 渲染时长/ms |
---|---|---|---|
LOD0 | 10 29 388 | 无 | 1896 |
LOD1 | 523 841 | 0.49 | 1016 |
LOD2 | 267 215 | 0.49 | 517 |
LOD3 | 136 773 | 0.49 | 299 |
LOD4 | 70 074 | 0.49 | 146 |
LOD5 | 35 680 | 0.49 | 132 |
LOD6 | 18103 | 0.49 | 156 |
LOD7 | 9257 | 0.49 | 160 |
LOD8 | 4784 | 0.48 | 97 |
LOD9 | 2514 | 0.47 | 118 |
LOD10 | 1260 | 0.50 | 34 |
LOD11 | 630 | 0.50 | 14 |
LOD12 | 378 | 0.40 | 5 |
LOD13 | 252 | 0.33 | 2 |
LOD14 | 126 | 0.50 | 1 |
[1] | 张源. 城市三维地质建模方法研究[J]. 矿山测量, 2021, 49(1):65-68,88. |
[ Zhang Y. Research on urban 3D geological modeling method[J]. Mine Surveying, 2021, 49(1):65-68,88. ] | |
[2] | 戴粤, 戴吾蛟. 基于Surfer平台的FLAC3D三维地质建模方法与模型验证[J]. 工程勘察, 2022, 50(3):43-46. |
[ Dai Y, Dai W J. Three-dimensional geological modeling based on Surfer FLAC3D and its verification[J]. Geotechnical Investigation & Surveying, 2022, 50(3):43-46. ] | |
[3] | 刘鑫, 李季秀, 胡立堂. 基于多源数据融合的复杂地质矿区三维地质建模[J]. 工程勘察, 2021, 49(12):35-39. |
[ Liu X, Li J X, Hu L T. 3D geological modeling of complex geological mining area based on multi-source data fusion[J]. Geotechnical Investigation & Surveying, 2021, 49(< W>1 2):35-39. ] | |
[4] |
王金鑫, 赵光成, 禄丰年, 等. 真三维地质模型构建的球体测地线八叉树网格方法[J]. 地球信息科学学报, 2019, 21(8):1161-1169.
doi: 10.12082/dqxxkx.2019.180682 |
[ Wang J X, Zhao G C, Lu F N, et al. Sphere geodesic octree grid method for true three-dimensional geological model construction[J]. Journal of Geo-Information Science, 2019, 21(8):1161-1169. ] DOI:10.12082/dqxxkx.2019.180682
doi: 10.12082/dqxxkx.2019.180682 |
|
[5] | 黄岸烁, 张宝一. 一种基于距离场的三维地质空间属性插值方法[J]. 地质与勘探, 2019, 55(6):1510-1517. |
[ Huang A S, Zhang B Y. A method of three-dimensional geo-spatial attribute interpolation based on the distance field[J]. Geology and Exploration, 2019, 55(6):1510-1517. ] DOI:10.12134/j.dzykt.2019.06.017
doi: 10.12134/j.dzykt.2019.06.017 |
|
[6] | 郑通科, 陈庆, 袁峰, 等. 三维矿体模型快速构建方法研究[J]. 合肥工业大学学报(自然科学版), 2015, 38(1):98-102. |
[ Zheng T K, Chen Q, Yuan F, et al. Research on fast building of three-dimensional orebody models[J]. Journal of Hefei University of Technology (Natural Science), 2015, 38(1):98-102. ] | |
[7] | 张海翔, 李占东, 李阳, 等. “双控”地质建模技术的实践与认识——以渤海湾盆地SZ36-1油田为例[J]. 石油地球物理勘探, 2021, 56(3):603-611,415. |
[ Zhang H X, Li Z D, Li Y, et al. Practice and understanding of double controlled geological modeling technology: A case study on SZ36-1 Oilfield in the Bohai Bay Basin[J]. Oil Geophysical Prospecting, 2021, 56(3):603-611,415. ] DOI:10.13810/j.cnki.issn.1000-7210.2021.03.019
doi: 10.13810/j.cnki.issn.1000-7210.2021.03.019 |
|
[8] |
Zhang Q, Zhu H H. Collaborative 3D geological modeling analysis based on multi-source data standard[J]. Engineering Geology, 2018, 246:233-244. DOI:10.1016/j.enggeo.2018.10.001
doi: 10.1016/j.enggeo.2018.10.001 |
[9] | 李文雅, 李丽娟. 三维地质精细化建模在古贤水利枢纽中的应用[J]. 人民长江, 2021, 52(S1):117-119,129. |
[ Li W Y. Application of 3D geological fine modeling in Guxian Water Conservancy Project[J]. Yangtze River, 2021, 52(S1):117-119,129. ] DOI:10.16232/j.cnki.1001-4179.2021.S1.026
doi: 10.16232/j.cnki.1001-4179.2021.S1.026 |
|
[10] | 张明明, 李晓晖, 袁峰, 等. 地层三维建模及面模型插值方法对比研究[J]. 安徽地质, 2015, 25(3):182-186. |
[ Zhang M M, Li X H, Yuan F, et al. Comparative study between three-dimensional strata modeling and surface model interpolation[J]. Geology of Anhui, 2015, 25(3):182-186. ] | |
[11] | 龚方方, 胡继华. 基于物探数据的三维地质建模研究——以新疆吐鲁番盆地为例[J]. 产业与科技论坛, 2019, 18(10):92-94. |
[ Gong F F, Hu J H. Research on 3D geological modeling based on geophysical data: A case study of Turpan Basin in Xinjiang[J]. Industrial & Science Tribune, 2019, 18(10):92-94. ] DOI:10.3969/j.issn.1673-5641.2019.10.045
doi: 10.3969/j.issn.1673-5641.2019.10.045 |
|
[12] | Xu T, Mo F, Lin X T, et al. 3D geological modeling method and its application in complex Karst area based on BIM technology[J]. Construction Technology, 2022, 51(1 1):42-44,77. |
[13] | 曾敏, 赵信文, 陈松, 等. 基于多源数据融合的广州南沙核心区三维工程地质建模[J]. 华南地质, 2022, 38(2):281-291. |
[ Zeng M, Zhao X W, Chen S, et al. 3D engineering geological modeling of the Nansha core area of Guangzhou based on multi-source data coupling[J]. South China Geology, 2022, 38(2):281-291. ] | |
[14] | 陈鹏宇. 大规模城市建筑物的一种混合LOD实时绘制算法[J]. 现代计算机, 2020(1):3-7. |
[ Chen P Y. A hybrid LOD real-time rendering algorithm for large-scale urban buildings[J]. Modern Computer, 2020(1):3-7. ] DOI:10.3969/j.issn.1007-1423.2020.01.001
doi: 10.3969/j.issn.1007-1423.2020.01.001 |
|
[15] | 李媛媛, 罗训. 基于虚拟现实的渲染优化算法[J]. 计算机系统应用, 2019, 28(6):178-182. |
[ Li Y Y, Luo X. Rendering optimization algorithm based on virtual reality[J]. Computer Systems & Applications, 2019, 28(6):178-182. ] DOI:10.15888/j.cnki.csa.006962
doi: 10.15888/j.cnki.csa.006962 |
|
[16] |
王振武, 吕小华, 韩晓辉. 基于四叉树分割的地形LOD技术综述[J]. 计算机科学, 2018, 45(4):34-45.
doi: 10.11896/j.issn.1002-137X.2018.04.005 |
[ Wang Z W, Lv X H, Han X H. Survey of terrain LOD technology based on quadtree segmentation[J]. Computer Science, 2018, 45(4):34-45. ] DOI:10.11896/j.issn.1002-137X.2018.04.005
doi: 10.11896/j.issn.1002-137X.2018.04.005 |
|
[17] | 宋力兵, 龚华军, 王新华. 基于改进的约束四叉树LOD全球地形实时绘制[J]. 计算机与数字工程, 2013, 41(10):1668-1671,1697. |
[ Song L B, Gong H J, Wang X H. Global terrain real-time rendering based on improved constraint quad-tree and level of detail algorithm[J]. Computer & Digital Engineering, 2013, 41(10):1668-1671,16 97. ] | |
[18] | 刘振东, 李成名, 武鹏达, 等. 去LoD层级约束的海量三维地形裂缝实时消除算法[J]. 测绘通报, 2018(7):48-52. |
[ Liu Z D, Li C M, Wu P D, et al. A level constraints removed algorithm for avoiding crack in massive 3D terrain[J]. Bulletin of Surveying and Mapping, 2018(7):48-52. ] DOI:10.13474/j.cnki.11-2246.2018.0208
doi: 10.13474/j.cnki.11-2246.2018.0208 |
|
[19] | 袁凌, 李丹, 陶飞. 三维场景实时建模中地形生成算法优化[J]. 武汉大学学报·信息科学版, 2017, 42(10):1387-1393. |
[ Yuan L, Li D, Tao F. Optimization of terrain generation algorithm in three-dimensional real-time modeling[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10):1387-1393. ] DOI:10.13203/j.whugis20160100
doi: 10.13203/j.whugis20160100 |
|
[20] | 汤延辰, 郭星, 张功营, 等. 一种多控制因子LOD大规模地形绘制算法[J]. 微电子学与计算机, 2019, 36(4):99-104. |
Guo X, Zhang G Y, et al. A LOD large-scale terrain rendering algorithm with multiple control factors[J]. Microelectronics & Computer, 2019, 36(4):99-104. ] DOI:10.19304/j.cnki.issn1000-7180.2019.04.020
doi: 10.19304/j.cnki.issn1000-7180.2019.04.020 |
|
[21] | 欧阳志恒, 崔光茫, 赵巨峰, 等. 基于分层级各向异性滤波的图像景深渲染算法[J]. 光学技术, 2018, 44(4):469-475. |
[ Ouyang Z H, Cui G M, Zhao J F, et al. A layered image depth of field rendering algorithm using anisotropic filtering[J]. Optical Technique, 2018, 44(4):469-475. ] DOI:10.13741/j.cnki.11-1879/o4.2018.04.015
doi: 10.13741/j.cnki.11-1879/o4.2018.04.015 |
|
[22] |
李朝奎, 王宁, 吴柏燕, 等. 一种新的ROAM算法及其在地形建模中的应用[J]. 地球信息科学学报, 2018, 20(9):1209-1215.
doi: 10.12082/dqxxkx.2018.180050 |
[ Li C K, Wang N, Wu B Y, et al. A new ROAM algorithm and its application in terrain modeling[J]. Journal of Geo-Information Science, 2018, 20(9):1209-1215. ] | |
[23] | 韩莹, 杨丽芳, 郭娜. 基于LOD技术的多分辨率海水场景实时仿真[J]. 计算机仿真, 2020, 37(7):409-413. |
[ Han Y, Yang L F, Guo N. Real-time simulation of multi-resolution seawater scene based on LOD technology[J]. Computer Simulation, 2020, 37(7):409-413. ] | |
[24] |
Cignoni P, Ganovelli F, Gobbetti E, et al. Batched multi triangulation[C]// 2005 IEEE Visualization Conference (VIS 05). 2005:207-214. DOI:10.1109/vis.2005.12
doi: 10.1109/vis.2005.12 |
[25] |
Yoon S E, Salomon B, Gayle R, et al. Quick-VDR: Interactive view-dependent rendering of massive models[C]// IEEE Visualization 2004. IEEE, 2004: 131-138. DOI:10.1109/VISUAL.2004.86
doi: 10.1109/VISUAL.2004.86 |
[26] |
Heuer T, Sanders P, Schlag S. Network flow-based refinement for multilevel hypergraph partitioning[J]. ACM Journal of Experimental Algorithmics, 2019, 24:1-36. DOI:10.1145/3329872
doi: 10.1145/3329872 |
[27] |
Zhou G Y, Yuan S D, Luo S M. Mesh simplification algorithm based on the quadratic error metric and triangle collapse[J]. IEEE Access, 8:196341-196350. DOI:10.1109/ACCESS.2020.3034075
doi: 10.1109/ACCESS.2020.3034075 |
[28] |
Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs[J]. SIAM Journal on Scientific Computing, 1998, 20(1):359-392. DOI:10.1137/s1064827595287997
doi: 10.1137/s1064827595287997 |
[29] | 廖定安, 肖海慧, 王成杰. 基于Hausdorff测度的图像分割算法研究[J]. 自动化技术与应用, 2019, 38(8):89-92. |
[ Liao D A, Xiao H H, Wang C J. Study on image segmentation algorithm based on Hausdorff measure[J]. Techniques of Automation and Applications, 2019, 38(8):89-92. ] DOI:10.3969/j.issn.1003-7241.2019.08.021
doi: 10.3969/j.issn.1003-7241.2019.08.021 |
[1] | LIN Zhikun, WU Xiaozhu. Car-Following Model Considering Driver's Driving Style [J]. Journal of Geo-information Science, 2023, 25(9): 1798-1812. |
[2] | LIU Jingyi, PENG Ju, TANG Jianbo, HU Zhiyuan, GUO Qi, YAO Chen, CHEN Jinyong. An Automatic Trajectory Clustering Method Integrating Multiple Features [J]. Journal of Geo-information Science, 2023, 25(7): 1363-1377. |
[3] | WANG Haocheng, XIANG Longgang, GUAN Xuefeng, ZHANG Yeting. Urban Hotspot Detection from the Data Stream of Taxi Pick-up and Drop-off based on Distributed Multistage Grid Clustering [J]. Journal of Geo-information Science, 2023, 25(7): 1514-1530. |
[4] | TANG Zengyang, AI Tinghua, XU Haijiang. Reasoning of Spatial Distribution Pattern of Building Cluster based on Geographic Knowledge Graph [J]. Journal of Geo-information Science, 2023, 25(6): 1202-1214. |
[5] | FENG Yaowei, QU Yonghua. Extracting Canopy Four Geometric-optical Components by Incorporating Illumination Information into a Multi-scale K-means Cluster Method [J]. Journal of Geo-information Science, 2023, 25(5): 1037-1049. |
[6] | WANG Pengzhou, ZHAO Zhiyuan, YAO Wei, WU Sheng, WANG Yanxia, FANG Lina, WU Qunyong. Human Travel Patterns by E-hailing Cars and Traditional Taxis based on Geographic Flow Space [J]. Journal of Geo-information Science, 2023, 25(4): 726-740. |
[7] | WU Qiong, LI Zhigang, WU Min. Research Status and Development Trend of Urban Pocket Parks [J]. Journal of Geo-information Science, 2023, 25(12): 2439-3455. |
[8] | KE Weiwen, WU Sheng, KE Rihong. A Method for Analyzing Residents' Travel Characteristics Based on OD Flow Semantics and Spatio-temporal Semantic Clustering [J]. Journal of Geo-information Science, 2023, 25(11): 2150-2163. |
[9] | ZHAO Zhiyuan, HUANG Yonggang, WU Sheng, WU Qunyong, WANG Yanxia. Study on the Method of Identifying the Characteristics of the Traffic Violation Behavior based on the Spatial and Temporal Hotspot Analysis Approach [J]. Journal of Geo-information Science, 2022, 24(7): 1312-1325. |
[10] | KUANG Jiaheng, WU Qunyong. Spatial-temporal Equilibrium Analysis and Attraction Area Optimization of Dockless Sharing Bicycles Connected to Subway Stations [J]. Journal of Geo-information Science, 2022, 24(7): 1337-1348. |
[11] | JIANG Xiao, BAI Lubin, LOU Xiayin, LI Mei, LIU Hui. Usage Patterns Identification and Flow Prediction of Bike-sharing System based on Multiscale Spatiotemporal Clustering [J]. Journal of Geo-information Science, 2022, 24(6): 1047-1060. |
[12] | CHU Chen, ZHANG Hengcai, LU Feng. Inferring Consumption Behavior of Customers in Shopping Malls from Indoor Trajectories [J]. Journal of Geo-information Science, 2022, 24(6): 1034-1046. |
[13] | HE Yang, YAN Haowen, WANG Zhuo, WANG Xiaolong. Landmark Extraction Method and Personalized Wayfinding Application for We-Map [J]. Journal of Geo-information Science, 2022, 24(5): 827-836. |
[14] | ZHANG Han, WU Qunyong. A Spatio-temporal Semantic Clustering Algorithm for OD Flow Direction based on LDA and Ant Colony Optimization [J]. Journal of Geo-information Science, 2022, 24(5): 837-850. |
[15] | ZHU Qiuzhen, WU Qunyong, YAO Chengxin, SUN Haoyu. Fine Classification and Identification of Traffic States based on DBI and Sparse Trajectory Data [J]. Journal of Geo-information Science, 2022, 24(3): 458-468. |
|