Journal of Geo-information Science ›› 2023, Vol. 25 ›› Issue (5): 909-923.doi: 10.12082/dqxxkx.2023.220712
Previous Articles Next Articles
QI Meng1,2(), CHEN Nan1,2,*(
), LIN Siwei3, ZHOU Qianqian4
Received:
2022-09-21
Revised:
2022-12-14
Online:
2023-05-25
Published:
2023-04-27
Contact:
CHEN Nan
E-mail:qimeng008005@163.com;chennan@fzu.edu.cn
Supported by:
QI Meng, CHEN Nan, LIN Siwei, ZHOU Qianqian. Geomorphic Recognition of China Considering Complex Network of Catchments[J].Journal of Geo-information Science, 2023, 25(5): 909-923.DOI:10.12082/dqxxkx.2023.220712
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Description of complex network indicators and related calculation methods
指标名称 | 指标公式 | 公式参数说明 | 地学意义 | 公式编号 |
---|---|---|---|---|
平均度 | 反映了集水区网络中某一类型节点所占的比重 | (1) | ||
平均加权度 | 反映了集水区复杂网络中某一类型节点对应边的权重情况 | (2) | ||
网络直径 | 表达了网络中各节点之间的距离 | (3) | ||
网络密度 | 在集水区复杂网络中,用网络中实际拥有的连线书与最多可能存在的连线总数之比表示 | 反映了集水区复杂网络中各节点间联络的紧密程度 | (4) | |
平均路径长度 | 对于一个集水区复杂网络,2个特征点之间存在多条集水区特征点连通且存在多种连通方式,则两个特征节点i与j之间的距离 | 反映了复杂的集水区网络中节点之间的分离程度 | (5) | |
网络结构熵 | 从整体角度衡量了集水区复杂网络系统演化的发展趋势 | (6) | ||
分形维数 | 对于任意一个集水区复杂网络,采用边长为r的正方形盒子覆盖,会出现一些盒子是包含图形,其余为空盒子的情况。随着盒子边长的增加,则包含图形的盒子数目逐渐减少。 | 刻画了集水区复杂网络系统的复杂程度,反映了集水区复杂网络系统的相似性 | (7) |
Tab. 2
Topographic index meaning and related calculation methods
指标名称 | 指标公式 | 公式参数说明 | 地学含义 | 公式编号 |
---|---|---|---|---|
坡向/° (Aspect) | 描述了集水区上坡面的朝向 | (8) | ||
坡度/% (slope) | 描述了集水区地表单元的陡缓程度 | (9) | ||
粗糙度 (SR) | 描述了集水区地势起伏的复杂程度 | (10) | ||
坡向变率 (SOA) | 描述了地表局部范围内坡向的变化情况 | (11) | ||
平面曲率 (Curve) | 集水区地形曲面在水平方向的曲率,描述了地面等高线的弯曲程度 | (12) | ||
剖面曲率 (SOS) | 描述了坡度的变化 程度 | (13) | ||
地表切割深度/m (SCD) | 反映了地表被侵蚀切割的情况 | (14) | ||
高程变异系数 (ECV) | 反映了地貌特征的差异性 | (15) |
[1] |
MacMillan R A, Shary P A. Chapter 9 landforms and landform elements in geomorphometry[J]. Developments in Soil Science, 2009, 33:227-254. DOI:10.1016/S0166-2481(08)00009-3
doi: 10.1016/S0166-2481(08)00009-3 |
[2] |
Smith M J. Digital mapping[M]// Developments in Earth Surface Processes. Amsterdam: Elsevier, 2011:225-251. DOI:10.1016/B978-0-444-53446-0.00008-2
doi: 10.1016/B978-0-444-53446-0.00008-2 |
[3] |
陈楹, 李安波, 姚蒙蒙, 等. 基于空间结构模式匹配的褶皱地貌类型自动识别[J]. 地球信息科学学报, 2016, 18(11):1500-1512.
doi: 10.3724/SP.J.1047.2016.01500 |
[ Chen Y, Li A B, Yao M M, et al. Automatic recognition of fold landform types based on spatial structure pattern matching[J]. Journal of Geo-Information Science, 2016, 18(11):1500-1512. ] DOI:10.3724/SP.J.1047.2016.01500
doi: 10.3724/SP.J.1047.2016.01500 |
|
[4] | 张福浩, 朱月月, 赵习枝, 等. 地理因子支持下的滑坡隐患点空间分布特征及识别研究[J]. 武汉大学学报·信息科学版, 2020, 45(8):1233-1244. |
[ Zhang F H, Zhu Y Y, Zhao X Z, et al. Spatial distribution and identification of hidden danger points of landslides based on geographical factors[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8):1233-1244. ] DOI:10.13203/j.whugis20200126
doi: 10.13203/j.whugis20200126 |
|
[5] | 曹伟超, 陶和平, 孔博, 等. 青藏高原地貌形态总体特征的GIS识别分析[J]. 水土保持通报, 2011, 31(04):163-167,247. |
[ Cao W C, Tao H P, Kong B, et al. Recongnition of general topographic features in Qinghai- Tibet Plateau based on GIS[J]. Bulletin of Soil and Water Conservation, 2011, 31(04):163-167,247. ] DOI:10.13961/j.cnki.stbctb.2011.04.004
doi: 10.13961/j.cnki.stbctb.2011.04.004 |
|
[6] |
Zhao W F, Xiong L Y, Ding H, et al. Automatic recognition of loess landforms using Random Forest method[J]. Journal of Mountain Science, 2017, 14(5):885-897. DOI: 10.1007/s11629-016-4320-9
doi: 10.1007/s11629-016-4320-9 |
[7] | 曹伟超, 陶和平, 孔博, 等. 利用最佳地形特征空间进行地貌形态自动识别——以西南地区为例[J]. 武汉大学学报·信息科学版, 2011, 36(11):1376-1380. |
[ Cao W H, Tao H P, Kong B, et al. Topographic Automatic recognition of geomorphology using optimal terrain feature space: A Case Study of Southwest China[J]. Journal of Wuhan University(Natural Science Edition), 2011, 36(11):1376-1380. ] DOI:10.13203/j.whugis2011.11.028
doi: 10.13203/j.whugis2011.11.028 |
|
[8] | 钟业勋, 魏文展, 李占元. 基本地貌形态数学定义的研究[J]. 测绘科学, 2002, 27(3):16-18,2. |
[ Zhong Y X, Wei W Z, Li Z Y. A reseach on the mathematical definition of the basic landform shape[J]. Developments in Surveying and Mapping, 2002, 27(3):16-18,2. ] DOI:10.3771/j.issn.1009-2307.2002.03.005
doi: 10.3771/j.issn.1009-2307.2002.03.005 |
|
[9] | 汤国安, 李发源, 熊礼阳. 黄土高原数字地形分析研究进展[J]. 地理与地理信息科学, 2017, 33(4):1-7. |
[ Tang G A, Li F Y, Xiong L Y. Progress of digital terrain analysis in the loess plateau of China[J]. Geography and Geo-Information Science, 2017, 33(4):1-7. ] DOI:10.3969/j.issn.1672-0504.2017.04.001
doi: 10.3969/j.issn.1672-0504.2017.04.001 |
|
[10] |
Lin S W, Xie J, Deng J Y, et al. Landform classification based on landform geospatial structure - a case study on Loess Plateau of China[J]. International Journal of Digital Earth, 2022, 15(1):1125-1148. DOI:10.1080/17538947.2022.2088874
doi: 10.1080/17538947.2022.2088874 |
[11] |
朱红春, 汤国安, 李永胜. 黄土沟谷特征点簇及其空间结构模型研究[J]. 地理科学, 2015, 35(9):1170-1175.
doi: 10.13249/j.cnki.sgs.2015.09.1170 |
[ Zhu H C, Tang G A, Li Y S. The loess gully feature points cluster and its spatial structure model[J]. Scientia Geographica Sinica, 2015, 35(9):1170-1175. ] DOI:10.13249/j.cnki.sgs.2015.09.014
doi: 10.13249/j.cnki.sgs.2015.09.014 |
|
[12] | 朱红春, 汤国安, 吴良超, 等. 基于地貌结构与汇水特征的沟谷节点提取与分析——以陕北黄土高原为例[J]. 水科学进展, 2012, 23(1):7-13. |
[ Zhu H C, Tang G A, Wu L C, et al. Extraction and analysis of gully nodes based on geomorphological structures and catchment characteristics: A case study in the loess plateau of North Shaanxi Province[J]. Advances in Water Science, 2012, 23(1):7-13. ] DOI:10.14042/j.cnki.32.1309.2012.01.014
doi: 10.14042/j.cnki.32.1309.2012.01.014 |
|
[13] | 汤国安, 李发源, 杨昕. 黄土高原数字地形分析探索与实践[M]. 北京: 科学出版社, 2015. |
[ Tang G A, Li F Y, Yang X. Exploration and practice of digital terrain analysis on loess plateau[M]. Beijing: Science Press, 2015. ] | |
[14] |
Tao Y, Tang G A, Strobl J. Spatial structure characteristics detecting of landform based on improved 3D Lacunarity model[J]. Chinese Geographical Science, 2012, 22(1):88-96. DOI:10.1007/s11769-012-0516-2
doi: 10.1007/s11769-012-0516-2 |
[15] |
Crofts R S. The landscape component approach to landscape evaluation[J]. Transactions of the Institute of British Geographers, 1975(66): 124. DOI:10.2307/621626
doi: 10.2307/621626 |
[16] | 张红, 何晶, 杨婕, 等. 基于复杂网络的道路网拓扑结构信息度量[J]. 地理与地理信息科学, 2017, 33(2):1-6. |
[ Zhang H, He J, Yang J, et al. Quantitative measurements on topological structural information of road networks based on complex network analyses[J]. Geography and Geo-Information Science, 2017, 33(2):1-6. ] DOI:10.3969/j.issn.1672-0504.2017.02.001
doi: 10.3969/j.issn.1672-0504.2017.02.001 |
|
[17] |
武鹏飞, 宫辉力, 周德民. 基于复杂网络的官厅水库流域土地利用/覆被变化[J]. 地理学报, 2012, 67(1):113-121.
doi: 10.11821/xb201201012 |
[ Wu P F, Gong H L, Zhou D M. Land use and land cover change in watershed of Guanting Reservoir based on complex network[J]. Acta Geographica Sinica, 2012, 67(1):113-121. ] DOI:10.11821/xb201201012
doi: 10.11821/xb201201012 |
|
[18] |
Wu X F, Yu K, Wang X. On the growth of Internet application flows: A complex network perspective[C]// 2011 Proceedings IEEE INFOCOM. IEEE,2011: 2096- 2104. DOI:10.1109/INFCOM.2011.5935019
doi: 10.1109/INFCOM.2011.5935019 |
[19] |
Heckmann T, Schwanghart W. Geomorphic coupling and sediment connectivity in an alpine catchment—Exploring sediment cascades using graph theory[J]. Geomorphology, 2013, 182:89-103. DOI:10.1016/j.geomorph.2012.10.033
doi: 10.1016/j.geomorph.2012.10.033 |
[20] |
Jha S K, Zhao H H, Woldemeskel F M, et al. Network theory and spatial rainfall connections: An interpretation[J]. Journal of Hydrology, 2015, 527:13-19. DOI:10.1016/j.jhydrol.2015.04.035.
doi: 10.1016/j.jhydrol.2015.04.035 |
[21] |
Sivakumar B, Puente C E, Maskey M L. Complex networks and hydrologic applications[M]// Advances in Nonlinear Geosciences. Cham: Springer International Publishing, 2017:565-586. DOI:10.1007/978-3-319-58895-7_26
doi: 10.1007/978-3-319-58895-7_26 |
[22] |
Abe S, Suzuki N. Complex-network description of seismicity[J]. Nonlinear Processes in Geophysics, 2006, 13(2):145-150. DOI:10.5194/npg-13-145-2006
doi: 10.5194/npg-13-145-2006 |
[23] |
Phillips J D, Schwanghart W, Heckmann T. Graph theory in the geosciences[J]. Earth-Science Reviews, 2015, 143:147-160. DOI:10.1016/j.earscirev.2015.02.002
doi: 10.1016/j.earscirev.2015.02.002 |
[24] |
Donges J F, Zou Y, Marwan N, et al. Complex networks in climate dynamics[J]. The European Physical Journal Special Topics, 2009, 174(1):157-179. DOI:10.1140/epjst/e2009-01098-2
doi: 10.1140/epjst/e2009-01098-2 |
[25] |
贺卓文, 陈楠. 复杂网络理论在黄土高原沟谷地貌特征研究中的应用[J]. 地球信息科学学报, 2021, 23(7):1196-1207.
doi: 10.12082/dqxxkx.2021.200639 |
[ He Z W, Chen N. Feature analysis of gully landforms in the loess plateau based on complex networks[J]. Journal of Geo-information Science, 2021, 23(7):1196-1207. ] DOI:10.12082/dqxxkx.2021.200639
doi: 10.12082/dqxxkx.2021.200639 |
|
[26] | 田剑, 汤国安, 赵明伟. 流域地形景观系统的复杂网络描述[J]. 地理与地理信息科学, 2014, 30(4):22-26. |
[ Tian J, Tang G A, Zhao M W. Complex network description of terrain landscape system on drainage basin[J]. Geography and Geo-Information Science, 2014, 30(4):22-26. ] DOI:10.3969/j.issn.1672-0504.2014.04.005
doi: 10.3969/j.issn.1672-0504.2014.04.005 |
|
[27] |
林偲蔚, 陈楠, 刘奇祺, 等. 基于DEM小流域复杂网络的黄土高原地貌自动识别研究[J]. 地球信息科学学报, 2022, 24(4):657-672.
doi: 10.12082/dqxxkx.2022.210449 |
[ Lin S W, Chen N, Liu Q Q, et al. Geomorphological automatic recognition of loess plateau based on complex network of small watershed from DEM[J]. Journal of Geo-information Science, 2022, 24(4):657-672. ] DOI:10.12082/dqxxkx.2022.210449
doi: 10.12082/dqxxkx.2022.210449 |
|
[28] | 贺中华, 梁虹, 黄法苏, 等. 基于DEM的喀斯特流域地貌类型的识别[J]. 大地测量与地球动力学, 2008, 28(3):46-53. |
[ He Z H, Liang H, Huang F S, et al. Recognition based on Dem of geomorphologic type of Karst drainage[J]. Journal of Geodesy and Geodynamics, 2008, 28(3):46-53. ] DOI:10.14075/j.jgg.2008.03.009
doi: 10.14075/j.jgg.2008.03.009 |
|
[29] |
Cao M, Tang G A, Zhang F, et al. A cellular automata model for simulating the evolution of positive-negative terrains in a small loess watershed[J]. International Journal of Geographical Information Science, 2013, 27(7):1349-1363. DOI:10.1080/13658816.2012.756882
doi: 10.1080/13658816.2012.756882 |
[30] |
Yang R, Willett S D, Goren L. In situ low-relief landscape formation as a result of river network disruption[J]. Nature, 2015, 520(7548):526-529. DOI:10.1038/nature14354
doi: 10.1038/nature14354 |
[31] | 王乐, 周毅, 李阳. 面向子流域单元的典型黄土地貌分类研究[J]. 干旱区研究, 2019, 36(6):1592-1598. |
[ Wang L, Zhou Y, Li Y. Classification of typical loess landforms in subcatchments[J]. Arid Zone Research, 2019, 36(6):1592-1598. ] DOI:10.13866/j.azr.2019.06.30
doi: 10.13866/j.azr.2019.06.30 |
|
[32] | 张艳可, 王金亮, 苏怀, 等. 基于CART决策树的双尺度流域单元地貌分类研究——以北回归线(云南段)地区为例[J]. 地理与地理信息科学, 2021, 37(2):84-92. |
[ Zhang Y K, Wang J L, Su H, et al. Study on landform classification of dual-scale watershed units based on CART: A case study of the tropic of cancer (Yunnan section)[J]. Geography and Geo-Information Science, 2021, 37(2):84-92. ] DOI:10.3969/j.issn.1672-0504.2021.02.012
doi: 10.3969/j.issn.1672-0504.2021.02.012 |
|
[33] |
Li M, Yang X, Na J M, et al. Regional topographic classification in the North Shaanxi Loess Plateau based on catchment boundary profiles[J]. Progress in Physical Geography: Earth and Environment, 2017, 41(3):302-324. DOI:10.1177/0309133317706356
doi: 10.1177/0309133317706356 |
[34] |
Xiong L Y, Zhu A X, Zhang L, et al. Drainage Basin object-based method for regional-scale landform classification: A case study of loess area in China[J]. Physical Geography, 2018, 39(6):523-541. DOI:10.1080/02723646.2018.1442062
doi: 10.1080/02723646.2018.1442062 |
[35] |
刘双琳, 李发源, 蒋如乔, 等. 黄土地貌类型的坡谱自动识别分析[J]. 地球信息科学学报, 2015, 17(10):1234-1242.
doi: 10.3724/SP.J.1047.2015.01234 |
Li F Y, Jiang R Q, et al. A method of loess landform automatic recognition based on slope spectrum[J]. Journal of Geo-Information Science, 2015, 17(10):1234-1242. ] DOI:10.3724/SP.J.1047.2015.01234
doi: 10.3724/SP.J.1047.2015.01234 |
|
[36] | 蒋圣. 基于DEM的黄土高原地形纹理研究[D]. 南京: 南京师范大学, 2020. |
[ Jiang S. DEM based research on terrain texture of the loess plateau[D]. Nanjing: Nanjing Normal University, 2020. ] DOI:10.27245/d.cnki.gnjsu.2020.000058
doi: 10.27245/d.cnki.gnjsu.2020.000058 |
|
[37] |
曹泽涛, 方子东, 姚瑾, 等. 基于随机森林的黄土地貌分类研究[J]. 地球信息科学学报, 2020, 22(3):452-463.
doi: 10.12082/dqxxkx.2020.190247 |
[ Cao Z T, Fang Z D, Yao J, et al. Loess landform classification based on random forest[J]. Journal of Geo-Information Science, 2020, 22(3):452-463. ] DOI:10.12082/dqxxkx.2020.190247
doi: 10.12082/dqxxkx.2020.190247 |
|
[38] |
Du L, You X, Li K, et al. Multi-modal deep learning for landform recognition[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158:63-75. DOI:10.1016/j.isprsjprs.2019.09.018
doi: 10.1016/j.isprsjprs.2019.09.018 |
[39] |
Cheng W M, Zhou C H, Li B Y, et al. Structure and contents of layered classification system of digital geomorphology for China[J]. Journal of Geographical Sciences, 2011, 21(5):771. DOI:10.1007/s11442-011-0879-9
doi: 10.1007/s11442-011-0879-9 |
[40] | 周成虎, 程维明, 钱金凯, 等. 中国陆地1∶100万数字地貌分类体系研究[J]. 地球信息科学学报, 2009, 11(6):707-724. |
[ Zhou C H, Cheng W M, Qian J K, et al. Research on the classification system of digital land geomorphology of 1∶1000000 in China[J]. Journal of Geo-Information Science, 2009, 11(6):707-724. ] DOI:10.3969/j.issn.1560-8999.2009.06.006
doi: 10.3969/j.issn.1560-8999.2009.06.006 |
|
[41] |
程维明, 周成虎, 李炳元, 等. 中国地貌区划理论与分区体系研究[J]. 地理学报, 2019, 74(5):839-856.
doi: 10.11821/dlxb201905001 |
[ Cheng W M, Zhou C H, Li B Y, et al. Geomorphological regionalization theory system and division methodology of China[J]. Acta Geographica Sinica, 2019, 74(5):839-856. ] DOI:10.11821/dlxb201905001
doi: 10.11821/dlxb201905001 |
|
[42] |
Wang N, Cheng W M, Wang B X, et al. Geomorphological regionalization theory system and division methodology of China[J]. Journal of Geographical Sciences, 2020, 30(2):212-232. DOI:10.1007/s11442-020-1724-9
doi: 10.1007/s11442-020-1724-9 |
[43] | 汪凯, 陈楠. 顾及空间特征的地形特征点提取方法[J]. 测绘科学, 2021, 46(2):192-202. |
[ Wang K, Chen N. Terrain feature point extraction method considering spatial characteristics[J]. Science of Surveying and Mapping, 2021, 46(2):192-202. ] DOI:10.16251/j.cnki.1009-2307.2021.02.028
doi: 10.16251/j.cnki.1009-2307.2021.02.028 |
|
[44] |
谢轶群, 朱红春, 汤国安, 等. 基于DEM的沟谷特征点提取与分析[J]. 地球信息科学学报, 2013, 15(1):61-67.
doi: 10.3724/SP.J.1047.2013.00061 |
[ Xie Y Q, Zhu H C, Tang G A, et al. Extraction and analysis of gully feature points based on DEMs[J]. Journal of Geo-information Science, 2013, 15(1):61-67. ]
doi: 10.3724/SP.J.1047.2013.00061 |
|
[45] | 杨晓平, 王萍, 李晓峰, 等. 地形坡度和高程变异系数在识别墨脱活动断裂带中的应用[J]. 地震地质, 2019, 41(2):419-435. |
[ Yang X P, Wang P, Li X F, et al. Application of topographic slope and elevation variation coefficient in identifying the Motuo active fault zone[J]. Seismology and Geology, 2019, 41(2):419-435. ] | |
[46] | Ke G L, Meng Q, Finley T, et al. LightGBM: A highly efficient gradient boosting decision tree[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017:3149-3157. |
[47] |
Dhaliwal S, Nahid A A, Abbas R. Effective intrusion detection system using XGBoost[J]. Information, 2018, 9(7):149. DOI:10.3390/info9070149
doi: 10.3390/info9070149 |
[48] |
Friedman J H. Greedy function approximation: A gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5):1189-1232. DOI:10.1214/aos/1013203451
doi: 10.1214/aos/1013203451 |
[49] |
张捷, 包浩生. 分形理论及其在地貌学中的应用──分形地貌学研究综述及展望[J]. 地理研究, 1994, 13(3):104-112.
doi: 10.11821/yj1994030013 |
[ Zhong J, Bao H S. Fractal geomorpholopy──review and propect[J]. Geographical Research, 1994, 13(3):104-112. ]
doi: 10.11821/yj1994030013 |
[1] | SHANG Ming, REN Yangyang, SONG Hongli, YAO Ya'nan, BAI Lei, LI Yue, MA Jie. Evaluation of IMERG and GSMaP Precipitation Products on Monitoring Extreme Precipitation Events over Mainland China [J]. Journal of Geo-information Science, 2023, 25(9): 1813-1826. |
[2] | FAN Lanxin, WU Yanhong, CHI Haojing, ZHENG Siqi, YAN Jiaheng, REN Yongkang, SUN Zhonghua. Detecting Spatiotemporal Changes of Freshwater in Northwest China under a Warm-Wetting Climate using Remote Sensing [J]. Journal of Geo-information Science, 2023, 25(9): 1842-1854. |
[3] | ZHOU Chao, GAN Lulu, WANG Yue, WU Hongyang, YU Jin, CAO Ying, YIN Kunlong. Landslide Susceptibility Prediction based on Non-Landslide Samples Selection and Heterogeneous Ensemble Machine Learning [J]. Journal of Geo-information Science, 2023, 25(8): 1570-1585. |
[4] | DONG Yong, ZHOU Liang, GAO Hong, WANG Bao. Detection and Spatial Heterogeneity Analysis of Terrain Fragmentation on the Loess Plateau [J]. Journal of Geo-information Science, 2023, 25(8): 1625-1636. |
[5] | YAO Wei, ZHAO Zhiyuan, WU Sheng. Equality of Public Taxi Service in Xiamen City [J]. Journal of Geo-information Science, 2023, 25(8): 1637-1654. |
[6] | CAO Yu, FANG Xiuqin, YANG Lulu, JIANG Xinyuan, LIAO Meiyu, REN Liliang. Downscaling of CCI Soil Moisture in the Xiliaohe River Basin based on Random Forest [J]. Journal of Geo-information Science, 2023, 25(8): 1669-1681. |
[7] | ZHANG Tong, LIU Renyu, WANG Peixiao, GAO Chulin, LIU Jie, WANG Wangshu. Physics-informed Machine Learning and Its Research Prospects in GeoAI [J]. Journal of Geo-information Science, 2023, 25(7): 1297-1311. |
[8] | PAN Jiale, XIN Rui. Multi-scale Spatio-temporal Changes and Influencing Factors of the Shipping Network in the Great Lakes of North America during the COVID-19 Pandemic Period [J]. Journal of Geo-information Science, 2023, 25(7): 1481-1499. |
[9] | XIE Jing, CHEN Nan, LIN Siwei. Quantitative Analysis and Spatial Differentiation of Terrain based on Terrain Music: Example of Loess Plateau in Northern Shaanxi [J]. Journal of Geo-information Science, 2023, 25(5): 924-934. |
[10] | LI Linye, LI Yanyan, CHEN Chuanfa, LIU Yan, LIU Yating, LIU Panpan. Method for the Correction of Digital Elevation Models Over Forested Areas: Back Propagation Neural Network with the Consideration of Spatial Autocorrelation [J]. Journal of Geo-information Science, 2023, 25(5): 935-952. |
[11] | KE Rihong, WU Sheng, KE Weiwen. A Spatial-temporal Model for Identifying Tidal Shared-bicycle Stops and Bicycle Sharing Demand Prediction based on KNN-LightGBM [J]. Journal of Geo-information Science, 2023, 25(4): 741-753. |
[12] | LIU Yaoming, LI Wanjing, ZHANG Xiuyuan, ZHANG Yuheng, LI Ran, ZHOU Qi. Evaluating Rural Access Index across China with Multi-source Open Data [J]. Journal of Geo-information Science, 2023, 25(4): 783-793. |
[13] | LI Xinyu, YAN Haowen, WANG Zhuo, WANG Bingxuan. Evaluation of Road Environment Safety Perception and Analysis of Influencing Factors Combining Street View Imagery and Machine Learning [J]. Journal of Geo-information Science, 2023, 25(4): 852-865. |
[14] | HUANG Shuaiyuan, DONG Youfu, LI Haipeng. Establishment and Comparative Analysis of SRTM1 DEM Error Correction Model in the Loess Plateau [J]. Journal of Geo-information Science, 2023, 25(3): 669-681. |
[15] | XIE Qian, LU Ming, XIE Chunshan. High-temporal-frequency Forecast of Tourist Flow for Tourist Attraction based on LBS and Deep Learning [J]. Journal of Geo-information Science, 2023, 25(2): 298-310. |
|