Journal of Geo-information Science ›› 2023, Vol. 25 ›› Issue (10): 2070-2083.doi: 10.12082/dqxxkx.2023.220777
Previous Articles Next Articles
XIE Xiaoman1,2(), HONG Zixiang1,2, LI Li1,2,*(
), QIU Bingqi1,2, SU Yiran1,2
Received:
2022-10-11
Revised:
2023-01-09
Online:
2023-10-25
Published:
2023-09-22
Contact:
* LI Li, E-mail: Supported by:
XIE Xiaoman, HONG Zixiang, LI Li, QIU Bingqi, SU Yiran. Retrieval of Corn Residue Biomass Based on SAR Data with Soil Scattering Interference Removed[J].Journal of Geo-information Science, 2023, 25(10): 2070-2083.DOI:10.12082/dqxxkx.2023.220777
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 5
Performance of different features on biomass inversion (before the removal of soil scattering interference)
反演特征 | 2020年秋季样本 (n=81) | 2021年春季样本 (n=94) | |||
---|---|---|---|---|---|
R2 | RMSE/(g/m2) | R2 | RMSE/(g/m2) | ||
0.503 05 | 119.179 1 | 0.489 03 | 90.756 5 | ||
0.338 38 | 137.600 8 | 0.322 47 | 82.587 7 | ||
Product | 0.575 46 | 107.416 1 | 0.505 21 | 70.088 1 | |
Ratio | 0.179 61 | 147.443 5 | 0.145 56 | 121.008 3 | |
RVI | 0.140 37 | 156.845 6 | 0.169 93 | 94.537 2 | |
SPAN | 0.415 23 | 129.363 2 | 0.338 81 | 134.683 7 |
Tab. 6
Changes of biomass inversion accuracy of different features after separating soil scattering contribution
反演特征 | 2020年秋季样本 (n=81) | 2021年春季样本 (n=94) | |||
---|---|---|---|---|---|
ΔR2 | ΔRMSE/(g/m2) | ΔR2 | ΔRMSE/(g/m2) | ||
0.221 13 | 30.334 6 | 0.213 48 | 42.639 6 | ||
0.220 52 | 25.247 9 | 0.191 23 | 21.067 8 | ||
Product | 0.183 25 | 24.318 1 | 0.214 18 | 23.355 5 | |
Ratio | 0.203 01 | 14.522 2 | 0.239 60 | 30.622 3 | |
RVI | 0.214 10 | 20.927 9 | 0.155 41 | 22.075 8 | |
SPAN | 0.200 10 | 24.442 9 | 0.271 84 | 79.636 8 |
[1] | Daughtry C S T, Hunt E R Jr, McMurtrey J E III. Assessing crop residue cover using shortwave infrared reflectance[J]. Remote Sensing of Environment, 2004, 90(1):126-134. DOI:10.1016/j.rse.2003.10.023 |
[2] | 蔡文婷, 赵书河, 王亚梅, 等. 结合Sentinel-2光谱与纹理信息的冬小麦作物茬覆盖度估算[J]. 遥感学报, 2020, 24(9):1108-1119. |
[Cai W T, Zhao S H, Wang Y M, et al. Estimation of winter wheat residue cover using spectral and textural information from Sentinel-2 data[J]. Journal of Remote Sensing, 2020, 24(9):1108-1119.] DOI:10.11834/jrs.20208471 | |
[3] | Cai W T, Zhao S H, Wang Y M, et al. Estimation of winter wheat residue coverage using optical and SAR remote sensing images[J]. Remote Sensing, 2019, 11(10):1163. DOI:10.3390/rs11101163 |
[4] | 雷步云. 基于全极化雷达数据的冬小麦作物残茬生物量估算研究[D]. 南京: 南京大学, 2015. |
[Lei B Y. Estimation of winter wheat residue biomass based on full polarimetric radar data[D]. Nanjing: Nanjing University, 2015.] | |
[5] | Zhang M, Wu B F, Meng J H. Quantifying winter wheat residue biomass with a spectral angle index derived from China Environmental Satellite data[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 32:105-113. DOI:10.1016/j.jag.2014.03.020. |
[6] | Kross A, McNairn H, Lapen D, et al. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 34:235-248. DOI:10.1016/j.jag.2014.08.002 |
[7] | Nagler P L, Inoue Y, Glenn E P, et al. Cellulose Absorption Index (CAI) to quantify mixed soil-plant litter scenes[J]. Remote Sensing of Environment, 2003, 87(2/3):310-325. DOI:10.1016/j.rse.2003.06.001 |
[8] | Johnson J M F, Allmaras R R, Reicosky D C. Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database[J]. Agronomy Journal, 2006, 98(3):622-636. DOI:10.2134/agronj2005.0179 |
[9] | Elmore A J, Shi X, Gorence N J, et al. Spatial distribution of agricultural residue from rice for potential biofuel production in China[J]. Biomass and Bioenergy, 2008, 32(1):22-27. DOI:10.1016/j.biombioe.2007.06.005 |
[10] | Rundquist D, Streck N. Estimating residual wheat dry matter from remote sensing measurements[J]. Photogrammetric Engineering and Remote Sensing, 2002, 68:1193-1202. |
[11] | Aguilar J, Evans R, Vigil M, et al. Spectral estimates of crop residue cover and density for standing and flat wheat stubble[J]. Agronomy Journal, 2012, 104(2):271-279. DOI:10.2134/agronj2011.0175 |
[12] | Quemada M, Hively W D, Daughtry C S T, et al. Improved crop residue cover estimates obtained by coupling spectral indices for residue and moisture[J]. Remote Sensing of Environment, 2018, 206:33-44. DOI:10.1016/j.rse.2017.12.012 |
[13] | 孔庆玲, 李俐, 徐凯华, 等. 基于Sentinel-1A的东北地区作物留茬区监测研究[J]. 农业机械学报, 2017, 48(S1):284-289. |
[Kong Q L, Li L, Xu K H, et al. Monitoring crop residue area in northeast of China based on sentinel-1A data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1):284-289.] DOI:10.6041/j.issn.1000-1298.2017.S0.043 | |
[14] | Narayanan R M, Mielke L N, Dalton J P. Crop residue cover estimation using radar techniques[J]. Applied Engineering in Agriculture, 1992, 8(6):863-869. DOI:10.13031/2013.26125 |
[15] | McNairn H, Duguay C, Boisvert J, et al. Defining the sensitivity of multi-frequency and multi-polarized radar backscatter to post-harvest crop residue[J]. Canadian Journal of Remote Sensing, 2001, 27(3):247-263. DOI:10.1080/07038992.2001.10854941 |
[16] | Liu C A, Chen Z X, Shao Y, et al. Research advances of SAR remote sensing for agriculture applications: A review[J]. Journal of Integrative Agriculture, 2019, 18(3):506-525. DOI:10.1016/s2095-3119(18)62016-7 |
[17] | McNairn H, Wood D, Gwyn Q H J, et al. Mapping tillage and crop residue management practices with RADARSAT[J]. Canadian Journal of Remote Sensing, 1998, 24(1):28-35. DOI:10.1080/07038992.1998.10874688 |
[18] | Mattia F, Le Toan T, Picard G, et al. Multitemporal C-band radar measurements on wheat fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7):1551-1560. DOI:10.1109/TGRS.2003.813531 |
[19] | Mandal D, Kumar V, Lopez-Sanchez J M, et al. Crop biophysical parameter retrieval from Sentinel-1 SAR data with a multi-target inversion of Water Cloud Model[J]. International Journal of Remote Sensing, 2020, 41(14):5503-5524. DOI:10.1080/01431161.2020.1734261 |
[20] | Qi Z X, Yeh A G O, Li X, et al. Monthly short-term detection of land development using RADARSAT-2 polarimetric SAR imagery[J]. Remote Sensing of Environment, 2015, 164:179-196. DOI:10.1016/j.rse.2015.04.018 |
[21] | Yang H, Yang G J, Gaulton R, et al. In-season biomass estimation of oilseed rape (Brassica napus L.) using fully polarimetric SAR imagery[J]. Precision Agriculture, 2019, 20(3):630-648. DOI:10.1007/s11119-018-9587-0 |
[22] | Tanase M A, Panciera R, Lowell K, et al. Airborne multi-temporal L-band polarimetric SAR data for biomass estimation in semi-arid forests[J]. Remote Sensing of Environment, 2014, 145:93-104. DOI:10.1016/j.rse.2014.01.024 |
[23] | McNairn H, Duguay C, Brisco B, et al. The effect of soil and crop residue characteristics on polarimetric radar response[J]. Remote Sensing of Environment, 2002, 80(2):308-320. DOI:10.1016/s0034-4257(01)00312-1 |
[24] | Attema E P W, Ulaby F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978, 13(2):357-364. DOI:10.1029/rs013i002p00357 |
[25] | 耿德源, 赵天杰, 施建成, 等. 地基雷达的微波面散射模型对比与土壤水分反演[J]. 遥感学报, 2021, 25(4):929-940. |
[Geng D Y, Zhao T J, Shi J C, et al. Surface microwave scattering model evaluation and soil moisture retrieval based on ground-based radar data[J]. Journal of Remote Sensing, 2021, 25(4):929-940.] DOI:10.11834/jrs.20219305 | |
[26] | Oh Y, Sarabandi K, Ulaby F T. An inversion algorithm for retrieving soil moisture and surface roughness from polarimetric radar observation[C]// Proceedings of IGARSS '94-1994 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 1994, 3:1582-1584. DOI:10.1109/igarss.1994.399504 |
[27] | Zhang Q Q, Li L, Sun R Z, et al. Retrieval of the soil salinity from sentinel-1 dual-polarized SAR data based on deep neural network regression[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. DOI:10.1109/LG RS.2020.3041059 |
[28] | 赵建辉, 张晨阳, 闵林, 等. 基于特征选择和GA-BP神经网络的多源遥感农田土壤水分反演[J]. 农业工程学报, 2021, 37(11):112-120. |
[Zhao J H, Zhang C Y, Min L, et al. Retrieval for soil moisture in farmland using multi-source remote sensing data and feature selection with GA-BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(11):112-120.] DOI:10.11975/j.issn.1002-6819.2021.11.013 | |
[29] | 裴浩杰, 冯海宽, 李长春, 等. 基于综合指标的冬小麦长势无人机遥感监测[J]. 农业工程学报, 2017, 33(20):74-82. |
[Pei H J, Feng H K, Li C C, et al. Remote sensing monitoring of winter wheat growth with UAV based on comprehensive index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20):74-82.] DOI:10.11975/j.issn.1002-6819.2017.20.010 | |
[30] | Torres R, Snoeij P, Geudtner D, et al. GMES sentinel-1 mission[J]. Remote Sensing of Environment, 2012, 120:9-24. DOI: 10.1016/j.rse.2011.05.028 |
[31] | 陈安旭, 李月臣. 基于Sentinel-2影像的西南山区不同生长期水稻识别[J]. 农业工程学报, 2020, 36(7):192-199. |
[Chen A X, Li Y C. Rice recognition of different growth stages based on Sentinel-2 images in mountainous areas of Southwest China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7):192-199.] DOI:10.11975/j.issn.1002-6819.2020.07.022 | |
[32] | Panciera R, Walker J P, Jackson T J, et al. The soil moisture active passive experiments (SMAPEx): Toward soil moisture retrieval from the SMAP mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):490-507. DOI:10.1109/TGRS.2013.2241774 |
[33] | 李俐, 王荻, 王鹏新, 等. 基于色彩运算和混沌粒子群滤波的土壤粗糙度测算[J]. 农业机械学报, 2015, 46(3):158-165. |
[Li L, Wang D, Wang P X, et al. Soil surface roughness measurement based on color operation and chaotic particle swarm filtering[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3):158-165.] DOI:10.6041/j.issn.1000-1298.2015.03.022 | |
[34] | Adams J R, Berg A A, McNairn H, et al. Sensitivity of C-band SAR polarimetric variables to unvegetated agricultural fields[J]. Canadian Journal of Remote Sensing, 2013, 39(1):1-16. DOI:10.5589/m13-003 |
[35] | You N S, Dong J W, Huang J X, et al. The 10 m crop type maps in Northeast China during 2017-2019[J]. Scientific Data, 2021, 8(1):41. DOI:10.1038/s41597-021-00827-9 |
[36] | 刘之榆, 刘忠, 万炜, 等. SAR与光学遥感影像的玉米秸秆覆盖度估算[J]. 遥感学报, 2021, 25(6):1308-1323. |
[Liu Z Y, Liu Z, Wan W, et al. Estimation of maize residue cover on the basis of SAR and optical remote sensing image[J]. Journal of Remote Sensing, 2021, 25(6):1308-1323.] DOI:10.11834/jrs.20210053 |
[1] | QIU Fengting, GUO Zhifeng, ZHANG Zongke, WEI Xianhu, Jing Muxin. Water Body Area Extraction from SAR Image based on Improved SVM Classification Method [J]. Journal of Geo-information Science, 2022, 24(5): 940-948. |
|