Journal of Geo-information Science ›› 2023, Vol. 25 ›› Issue (5): 1050-1063.doi: 10.12082/dqxxkx.2023.220781
Previous Articles Next Articles
LIU Xiao(), LIU Zhi(
), LIN Yuzhun, WANG Shuxiang, ZUO Xibing
Received:
2022-10-12
Revised:
2023-01-28
Online:
2023-05-25
Published:
2023-04-27
Contact:
LIU Zhi
E-mail:liuxiao99919@163.com;zhiliu001@sina.com
LIU Xiao, LIU Zhi, LIN Yuzhun, WANG Shuxiang, ZUO Xibing. Class-centric Knowledge Distillation for RSI Scene Classification[J].Journal of Geo-information Science, 2023, 25(5): 1050-1063.DOI:10.12082/dqxxkx.2023.220781
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Remote sensing image scene classification dataset
数据集 | 分辨率/m | 类别数/个 | 尺寸/mm | 每类样本数/个 | 样本总数/个 | 特点 |
---|---|---|---|---|---|---|
RSC11 | 0.2 | 11 | 512 × 512 | 约100 | 1232 | 小型的遥感影像场景分类数据集 |
UCM | 0.3 | 21 | 256 × 256 | 100 | 2100 | 经典的高分辨率土地利用数据集 |
RSSCN7 | - | 7 | 400 × 400 | 400 | 2800 | 涵盖4个采样尺度的, 类内多样性大的场景分类数据集 |
AID | 0.5~0.8 | 30 | 600 × 600 | 200~400 | 10000 | 复杂的多源、多分辨率、类间相似性高、样本不均衡的航空图像数据集 |
Tab. 3
Overall accuracy of various knowledge distillation methods on UCM dataset (%)
蒸馏方法 | 师生架构 (Model T/S) | 同系列 (ResNet-50/ ResNet-18) | 不同系列 (ResNet-50/MobileNet-V2) | ||
---|---|---|---|---|---|
训练比率 | 80% | 60% | 80% | 60% | |
Baseline | 92.14 | 90.00 | 91.43 | 90.48 | |
响应 | KD | 95.48 | 92.38 | 93.33 | 90.24 |
DKD | 95.71 | 91.91 | 94.52 | 92.14 | |
特征 | NST | 94.05 | 91.67 | 92.62 | 90.48 |
VID | 93.57 | 89.41 | 92.38 | 89.05 | |
网络层间关系 | KDSVD | 92.62 | 90.36 | 92.62 | 89.88 |
ReviewKD | 94.29 | 92.62 | 94.29 | 91.07 | |
实例关系 | RKD | 94.52 | 92.02 | 92.38 | 87.38 |
SP | 93.33 | 91.43 | 80.48 | 59.05 | |
类中心 | 本文方法 | 97.14 | 95.36 | 94.76 | 92.62 |
Tab. 5
Overall accuracy on multiple datasets with 60% training ratio and homogeneous T/S network (%)
数据集 | 教师网络 | 学生网络 | 响应 | 特征 | 网络层间关系 | 实例关系 | 类中心 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
KD | DKD | NST | VID | KDSVD | ReviewKD | RKD | SP | 本文方法 | |||
RS_C11 | 92.35 | 90.14 | 91.95 | 90.95 | 89.74 | 88.13 | 87.73 | 90.34 | 89.74 | 87.73 | 94.37 |
RSSCN7 | 91.07 | 88.75 | 88.30 | 87.32 | 87.59 | 87.41 | 87.05 | 88.21 | 88.75 | 86.52 | 91.70 |
AID | 95.68 | 88.98 | 92.73 | 93.03 | 91.43 | 88.96 | 89.20 | 92.58 | 91.45 | 91.65 | 94.10 |
Tab. 7
Accuracy confusion matrix of comparison experiment on RSC11 Dataset (%)
单独训练的学生网络 | 微调的教师网络 | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
密林 | 草地 | 港口 | 高建筑 | 低建筑 | 立交 | 铁路 | 居民区 | 公路 | 疏林 | 储存罐 | 密林 | 草地 | 港口 | 高建筑 | 低建筑 | 立交 | 铁路 | 居民区 | 公路 | 疏林 | 储存罐 | ||
密林 | 98.21 | 1.79 | 密林 | 100 | |||||||||||||||||||
草地 | 100 | 草地 | 100 | ||||||||||||||||||||
港口 | 97.22 | 2.78 | 港口 | 100 | |||||||||||||||||||
高建筑 | 91.11 | 2.22 | 2.22 | 4.44 | 高建筑 | 97.62 | 2.38 | ||||||||||||||||
低建筑 | 85.42 | 6.25 | 8.33 | 地建筑 | 91.67 | 4.17 | 2.08 | 2.08 | |||||||||||||||
立交 | 2.33 | 74.42 | 2.33 | 18.6 | 2.33 | 立交 | 2.27 | 68.18 | 9.09 | 20.45 | |||||||||||||
铁路 | 3.12 | 3.12 | 87.5 | 6.25 | 铁路 | 8.00 | 88.00 | 4.00 | |||||||||||||||
居民区 | 1.61 | 1.61 | 87.1 | 4.84 | 4.84 | 居民区 | 1.79 | 98.21 | |||||||||||||||
公路 | 1.89 | 1.89 | 9.43 | 3.77 | 83.02 | 公路 | 3.28 | 13.11 | 8.20 | 75.41 | |||||||||||||
疏林 | 2.17 | 97.83 | 疏林 | 100 | |||||||||||||||||||
储存罐 | 5.71 | 2.86 | 91.43 | 储存罐 | 100 | ||||||||||||||||||
基于改进NST方法训练的学生网络 | 基于本文方法训练的学生网络 | ||||||||||||||||||||||
密林 | 草地 | 港口 | 高建筑 | 低建筑 | 立交 | 铁路 | 居民区 | 公路 | 疏林 | 储存罐 | 密林 | 草地 | 港口 | 高建筑 | 低建筑 | 立交 | 铁路 | 居民区 | 公路 | 疏林 | 储存罐 | ||
密林 | 100 | 密林 | 100 | ||||||||||||||||||||
草地 | 100 | 草地 | 100 | ||||||||||||||||||||
港口 | 92.31 | 2.56 | 5.13 | 港口 | 100 | ||||||||||||||||||
高建筑 | 90.91 | 4.55 | 2.27 | 2.27 | 高建筑 | 97.73 | 2.27 | ||||||||||||||||
地建筑 | 2.50 | 95.00 | 2.5 | 低建筑 | 95.24 | 2.38 | 2.38 | ||||||||||||||||
立交 | 89.19 | 5.41 | 5.41 | 立交 | 86.11 | 5.56 | 2.78 | 5.56 | |||||||||||||||
铁路 | 3.12 | 3.12 | 87.5 | 3.12 | 3.12 | 铁路 | 3.33 | 6.67 | 90.00 | ||||||||||||||
居民区 | 1.67 | 91.67 | 3.33 | 3.33 | 居民区 | 1.69 | 1.69 | 1.69 | 93.22 | 1.69 | |||||||||||||
公路 | 14.75 | 3.28 | 81.97 | 公路 | 15.15 | 3.03 | 81.82 | ||||||||||||||||
疏林 | 2.17 | 97.83 | 疏林 | 100 | |||||||||||||||||||
储存罐 | 7.14 | 92.86 | 储存罐 | 2.33 | 97.67 |
[1] |
Ghazouani F, Farah I R, Solaiman B. A multi-level semantic scene interpretation strategy for change interpretation in remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):8775-8795. DOI:10.1109/TGRS.2019.2922908
doi: 10.1109/TGRS.2019.2922908 |
[2] |
Hu F, Xia G S, Hu J W, et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 2015, 7(11):14680-14707. DOI:10.3390/rs71114680
doi: 10.3390/rs71114680 |
[3] |
Gu Y T, Wang Y T, Li Y S. A survey on deep learning-driven remote sensing image scene understanding: Scene classification, scene retrieval and scene-guided object detection[J]. Applied Sciences, 2019, 9(10):2110. DOI:10.3390/app9102110
doi: 10.3390/app9102110 |
[4] |
Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987. DOI: 10.1109/TPAMI.2002.1017623
doi: 10.1109/TPAMI.2002.1017623 |
[5] |
Zhu Q Q, Zhong Y F, Zhao B, et al. Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6):747-751. DOI:10.1109/LGRS.2015.2513443
doi: 10.1109/LGRS.2015.2513443 |
[6] |
Romero A, Gatta C, Camps-Valls G. Unsupervised deep feature extraction for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3):1349-1362. DOI:10.1109/TGRS.2015.2478379
doi: 10.1109/TGRS.2015.2478379 |
[7] |
Cheng G, Xie X X, Han J W, et al. Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:3735-3756. DOI:10.1109/JSTARS.2020.3005403
doi: 10.1109/JSTARS.2020.3005403 |
[8] |
郭子慧, 刘伟. 深度学习和遥感影像支持的矢量图斑地类解译真实性检查方法[J]. 地球信息科学学报, 2020, 22(10):2051-2061.
doi: 10.12082/dqxxkx.2020.200001 |
[ Guo Z H, Liu W. Land type interpretation authenticity check of vector patch supported by deep learning and remote sensing image[J]. Journal of Geo-Information Science, 2020, 22(10):2051-2061. ] DOI:10.12082/dqxxkx.2020.200001
doi: 10.12082/dqxxkx.2020.200001 |
|
[9] | 余东行, 张保明, 赵传, 等. 联合卷积神经网络与集成学习的遥感影像场景分类[J]. 遥感学报, 2020, 24(6):717-727. |
[ Yu D H, Zhang B M, Zhao C, et al. Scene classification of remote sensing image using ensemble convolutional neural network[J]. Journal of Remote Sensing, 2020, 24(6):717-727. ] DOI:10.11834/jrs.20208273
doi: 10.11834/jrs.20208273 |
|
[10] |
Sun H M, Lin Y W, Zou Q, et al. Convolutional neural networks based remote sensing scene classification under clear and cloudy environments[C]// 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE, 2021:713-720. DOI:10.1109/ICCVW54120.2021.00085
doi: 10.1109/ICCVW54120.2021.00085 |
[11] |
Chen W T, Ouyang S B, Tong W, et al. GCSANet: A global context spatial attention deep learning network for remote sensing scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15:1150-1162. DOI:10.1109/JSTARS.2022.3141826
doi: 10.1109/JSTARS.2022.3141826 |
[12] |
Wang Q, Huang W, Xiong Z T, et al. Looking closer at the scene: Multiscale representation learning for remote sensing image scene classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(4):1414-1428. DOI:10.1109/TNNLS.2020.3042276
doi: 10.1109/TNNLS.2020.3042276 |
[13] |
彭瑞, 赵文智, 张立强, 等. 基于多尺度对比学习的弱监督遥感场景分类[J]. 地球信息科学学报, 2022, 24(7):1375-1390.
doi: 10.12082/dqxxkx.2022.210809 |
[ Peng R, Zhao W Z, Zhang L Q, et al. Multi-scale contrastive learning based weakly supervised learning for remote sensing scene classification[J]. Journal of Geo-Information Science, 2022, 24(7):1375-1390. ] DOI:10.12082/dqxxkx.2022.210809
doi: 10.12082/dqxxkx.2022.210809 |
|
[14] |
Zhang R, Chen Z H, Zhang S X, et al. Remote sensing image scene classification with noisy label distillation[J]. Remote Sensing, 2020, 12(15): 2376. DOI:10.3390/rs12 152376
doi: 10.3390/rs12010012 |
[15] |
Zhang B, Zhang Y J, Wang S G. A lightweight and discriminative model for remote sensing scene classification with multidilation pooling module[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(8):2636-2653. DOI:10.1109/JSTARS.2019.2919317
doi: 10.1109/JSTARS.2019.2919317 |
[16] |
Chen G Z, Zhang X D, Tan X L, et al. Training small networks for scene classification of remote sensing images via knowledge distillation[J]. Remote Sensing, 2018, 10(5):719. DOI:10.3390/rs10050719
doi: 10.3390/rs10050719 |
[17] |
Zhao H R, Sun X, Gao F, et al. Pair-wise similarity knowledge distillation for RSI scene classification[J]. Remote Sensing, 2022, 14(10):2483. DOI: 10.3390/rs14102483
doi: 10.3390/rs14102483 |
[18] | Li H, Kadav A, Durdanovic I, et al. Pruning filters for efficient ConvNets[EB/OL]. 2016: arXiv: 1608.08710. https://arxiv.org/abs/1608.08710 |
[19] |
Yang T J, Chen Y H, Sze V. Designing energy-efficient convolutional neural networks using energy-aware pruning[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017:6071-6079. DOI:10.1109/CVPR.2017.643
doi: 10.1109/CVPR.2017.643 |
[20] |
Gou J P, Yu B S, Maybank S J, et al. Knowledge distillation: A survey[J]. International Journal of Computer Vision, 2021, 129(6):1789-1819. DOI:10.1007/s11263-021-01453-z
doi: 10.1007/s11263-021-01453-z |
[21] |
Buciluǎ C, Caruana R, Niculescu-Mizil A. Model compression[C]// Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM, 2006:535-541. DOI:10.1145/1150402.1150464
doi: 10.1145/1150402.1150464 |
[22] |
Ba J and Caruana R. Do deep nets really need to be deep?[C]. Advances in Neural Information Processing Systems, 2014, 27. DOI:10.48550/arXiv.1312.6184
doi: 10.48550/arXiv.1312.6184 |
[23] | Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[EB/OL]. 2015: arXiv:1503.02531. https://arxiv.org/abs/1503.02531 |
[24] | Romero A, Ballas N, Kahou S E, et al. FitNets: Hints for thin deep nets[EB/OL]. 2014: arXiv:1412.6550. https://arxiv.org/abs/1412.6550 |
[25] | Zagoruyko S, Komodakis N. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer[EB/OL]. 2016: arXiv: 1612.03928. https://arxiv.org/abs/1612.03928 |
[26] | Huang Z H, Wang N Y. Like what You like: Knowledge distill via neuron selectivity transfer[EB/OL]. 2017:arXiv: 1707.01219. https://arxiv.org/abs/1707.01219 |
[27] | Kim J, Park S, Kwak N. Paraphrasing complex network: Network compression via factor transfer[EB/OL]. 2018: arXiv: 1802.04977. https://arxiv.org/abs/1802.04977 |
[28] |
Heo B, Kim J, Yun S, et al. A comprehensive overhaul of feature distillation[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2020:1921- 1930. DOI:10.1109/ICCV.2019.00201
doi: 10.1109/ICCV.2019.00201 |
[29] |
Ahn S, Hu S X, Damianou A, et al. Variational information distillation for knowledge transfer[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020:9155-9163. DOI:10.1109/CVPR.2019.00938
doi: 10.1109/CVPR.2019.00938 |
[30] |
Yim J, Joo D, Bae J, et al. A gift from knowledge distillation: Fast optimization, network minimization and transfer learning[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017:7130-7138. DOI:10.1109/CVPR.2017.754
doi: 10.1109/CVPR.2017.754 |
[31] |
Lee S H, Kim D H, Song B C. Self-supervised knowledge distillation using singular value decomposition[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018:339-354. DOI:10.1007/978-3-030-01231-1_21
doi: 10.1007/978-3-030-01231-1_21 |
[32] |
Chen P G, Liu S, Zhao H S, et al. Distilling knowledge via knowledge review[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021:5006-5015. DOI: 10.1109/CVPR46437.2021.00497
doi: 10.1109/CVPR46437.2021.00497 |
[33] |
Passalis N, Tefas A. Learning deep representations with probabilistic knowledge transfer[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018:283-299. DOI:10.1007/978-3-030-01252-6_17
doi: 10.1007/978-3-030-01252-6_17 |
[34] |
Tung F, Mori G. Similarity-preserving knowledge distillation[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2020:1365-1374. DOI: 10.1109/ICCV.2019.00145
doi: 10.1109/ICCV.2019.00145 |
[35] |
Park W, Kim D, Lu Y, et al. Relational knowledge distillation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020:3962-3971. DOI: 10.1109/CVPR.2019.00409
doi: 10.1109/CVPR.2019.00409 |
[36] |
Zhao B R, Cui Q, Song R J, et al. Decoupled knowledge distillation[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022:11943-11952. DOI: 10.1109/CVPR52688.2022.01165
doi: 10.1109/CVPR52688.2022.01165 |
[37] |
Wang L, Yoon K J. Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6):3048-3068. DOI:10.1109/TPAMI.2021.3055564
doi: 10.1109/TPAMI.2021.3055564 |
[38] | 杨宏炳, 迟勇欣, 王金光. 基于剪枝网络的知识蒸馏对遥感卫星图像分类方法[J]. 计算机应用研究, 2021, 38(8):2469-2473. |
[ Yang H B, Chi Y X, Wang J G. Knowledge distillation method for remote sensing satellite image classification based on pruning network[J]. Application Research of Computers, 2021, 38(8):2469-2473. ] DOI: 10.19734/j.issn.1001-3695.2020.07.0387
doi: 10.19734/j.issn.1001-3695.2020.07.0387 |
|
[39] | Gretton A, Borgwardt K M, Rasch M J, et al. A kernel two-sample test[J]. Journal of Machine Learning Research, 2012, 13(25):723-773. |
[40] | Sejdinovic D, Gretton A. What is an RKHS? Lecture Notes, 2012 |
[41] |
Zhao L J, Tang P, Huo L Z. Feature significance-based multibag-of-visual-words model for remote sensing image scene classification[J]. Journal of Applied Remote Sensing, 2016, 10(3):035004. DOI:10.1117/1.JRS.10.035004
doi: 10.1117/1.JRS.10.035004 |
[42] |
Zou Q, Ni L H, Zhang T, et al. Deep learning based feature selection for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11):2321-2325. DOI:10.1109/LGRS.2015.2475299
doi: 10.1109/LGRS.2015.2475299 |
[43] |
Liu B D, Xie W Y, Meng J, et al. Hybrid collaborative representation for remote-sensing image scene classification[J]. Remote Sensing, 2018, 10(12): 1934. DOI:10.3390/rs10121934
doi: 10.3390/rs10121934 |
[44] |
Xia G S, Hu J W, Hu F, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3965-3981. DOI:10.1109/TGRS.2017.2685945
doi: 10.1109/TGRS.2017.2685945 |
[45] |
Xie S N, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017:5987-5995. DOI:10.1109/CVPR.2017.634
doi: 10.1109/CVPR.2017.634 |
[46] |
Sandler M, Howard A, Zhu M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018:4510-4520. DOI:10.1109/CVPR.2018.00474
doi: 10.1109/CVPR.2018.00474 |
[47] | Maaten L van der and Hinton G. Visualizing data using t-sne[J]. Journal of Machine Learning Research, 2008, 9(86):2579-2605. |
[48] |
Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]// 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017:618-626. DOI: 10.1109/ICCV.2017.74
doi: 10.1109/ICCV.2017.74 |
[1] | FAN Lanxin, WU Yanhong, CHI Haojing, ZHENG Siqi, YAN Jiaheng, REN Yongkang, SUN Zhonghua. Detecting Spatiotemporal Changes of Freshwater in Northwest China under a Warm-Wetting Climate using Remote Sensing [J]. Journal of Geo-information Science, 2023, 25(9): 1842-1854. |
[2] | XING Ziyao, DONG Xinrui, ZAN Xuli, YANG Shuai, HUANG Zihan, LIU Zhe, ZHANG Xiaodong. Flood Inundation Mapping and Estimation using VGI, Remote Sensing Images and Other Multi-source Data [J]. Journal of Geo-information Science, 2023, 25(9): 1869-1881. |
[3] | ZHANG Junyao, YANG Xiaomei, WANG Zhihua, YANG Haikun, ZHANG Bochun, WAN Qing, LEI Mei. Analysis of Pattern Evolution of Coal Mine Areas in Inner Mongolia from the Perspective of the Green Development Concept [J]. Journal of Geo-information Science, 2023, 25(8): 1655-1668. |
[4] | CAO Yu, FANG Xiuqin, YANG Lulu, JIANG Xinyuan, LIAO Meiyu, REN Liliang. Downscaling of CCI Soil Moisture in the Xiliaohe River Basin based on Random Forest [J]. Journal of Geo-information Science, 2023, 25(8): 1669-1681. |
[5] | ZHANG Hanbo, LI Tong, LI Xiaofang, DENG Ying, DENG Yingbin, JING Wenlong, HU Yiqiang, LI Yong, YANG Ji. A Short-term Prediction Method of Water Bloom based on UAV Remote Sensing and GWR [J]. Journal of Geo-information Science, 2023, 25(8): 1682-1698. |
[6] | ZUO Xibing, LIU Zhi, JIN Fei, LIN Yuzhun, WANG Shuxiang, LIU Xiao, LI Meilin. Global-local Feature Adaptive Fusion Method for Small Sample Classification of Hyperspectral Images [J]. Journal of Geo-information Science, 2023, 25(8): 1699-1716. |
[7] | LIN Na, HE Jing, WANG Bin, TANG Feifei, ZHOU Junyu, GUO Jiang. Intelligent Extraction of Urban Vegetation Information based on Vegetation Spectral Signature and Sep-UNet [J]. Journal of Geo-information Science, 2023, 25(8): 1717-1729. |
[8] | ZHANG Chunju, LIU Wencong, ZHANG Xueying, YE Peng, WANG Chen, ZHU Shaonan, ZHANG Dayu. Knowledge Graph Construction Method of Gold Mine based on Ontology [J]. Journal of Geo-information Science, 2023, 25(7): 1269-1281. |
[9] | ZHANG Tong, LIU Renyu, WANG Peixiao, GAO Chulin, LIU Jie, WANG Wangshu. Physics-informed Machine Learning and Its Research Prospects in GeoAI [J]. Journal of Geo-information Science, 2023, 25(7): 1297-1311. |
[10] | WU Min, ZHANG Mingda, LI Panpan, ZHANG Yongjian. Research on Provenance Model for Multi-source Remote Sensing Images [J]. Journal of Geo-information Science, 2023, 25(7): 1325-1335. |
[11] | LING Zhenfei, LIU Tao, DU Ping, ZHAO Dan, CHEN Puyi, MA Tianen. A Variational Graph Convolutional Auto-encoder Model Supporting Similarity Retrieval of Building Groups Patterns [J]. Journal of Geo-information Science, 2023, 25(7): 1405-1417. |
[12] | ZHAO Dan, DU Ping, LIU Tao, LING Zhenfei. Spatio-temporal Distribution Prediction Model of Urban Theft by Fusing Graph Autoencoder and GRU [J]. Journal of Geo-information Science, 2023, 25(7): 1448-1463. |
[13] | JIN Guangyin, SHA Hengyu, ZHANG Jinlei, HUANG Jincai. Travel Time Estimation Method based on Dual Graph Convolutional Networks via Joint Modeling of Road Segments and Intersections [J]. Journal of Geo-information Science, 2023, 25(7): 1500-1513. |
[14] | YANG Yingpin, WU Zhifeng, HUANG Qiting, LUO Jiancheng, WU Tianjun, DONG Wen, HU Xiaodong, XIAO Wenju. Extraction of Sugarcane Plantation Distribution in Western Guangdong by Combining Remote Sensing and Statistic Data and Its Spatiotemporal Analysis [J]. Journal of Geo-information Science, 2023, 25(5): 1012-1026. |
[15] | HOU Huitai, LAN Chaozhen, XU Qing. UAV Absolute Positioning Method based on Global and Local Deep Learning Feature Retrieval from Satellite Images [J]. Journal of Geo-information Science, 2023, 25(5): 1064-1074. |
|