Journal of Geo-information Science ›› 2023, Vol. 25 ›› Issue (10): 2039-2054.doi: 10.12082/dqxxkx.2023.230212
Previous Articles Next Articles
LI Yunfan1,2(), LI Caixia1,2, JIA Xiang1,2, WU Jing1,2, ZHANG Xiaoli1,2,*(
), MEI Xiaoli3, ZHU Ruoning3, WANG Dong3
Received:
2023-04-21
Revised:
2023-07-13
Online:
2023-10-25
Published:
2023-09-22
Contact:
* ZHANG Xiaoli, E-mail: Supported by:
LI Yunfan, LI Caixia, JIA Xiang, WU Jing, ZHANG Xiaoli, MEI Xiaoli, ZHU Ruoning, WANG Dong. Spatiotemporal Changes and Causes of Ecological Vulnerability in Ulansuhai Basin[J].Journal of Geo-information Science, 2023, 25(10): 2039-2054.DOI:10.12082/dqxxkx.2023.230212
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Ecological vulnerability assessment system of Ulansuhai Basin data sources
要素层 | 指标层 | 指标性质 | 空间分辨率 | 原始数据来源 |
---|---|---|---|---|
生态敏感性 (Sensitivity) | 高程 | 正向 | 90 m | SRTM[ |
地形起伏度 | 正向 | 90 m | SRTM | |
景观干扰度 | 正向 | 1 km | Zendo[ | |
年均降雨量 | 正向 | 1 km | 中国科学院环境数据中心 | |
大气温度 | 正向 | 1 km | Zendo[ | |
地表温度 | 正向 | 1 km | MODIS | |
地表湿度 | 负向 | 30 m | Landsat | |
地表干度 | 正向 | 30 m | Landsat | |
生态压力度 (Pressure) | 人口密度 | 正向 | 1 km | GPW v4[ |
生态恢复力 (Recovery) | 植被覆盖度 | 负向 | 30 m | Landsat |
经济密度 | 负向 | 1 km | 中国科学院环境数据中心[ |
Tab. 3
Classification standard of ecological vulnerability in Ulansuhai Basin
脆弱性等级 | 生态脆弱性指数范围 | 脆弱程度 | 生态特征解释 |
---|---|---|---|
Ⅰ | 0≤ EVI<0.2 | 潜在脆弱 | 生态功能完整,对各类干扰敏感性弱,承受生态压力小,自我恢复能力强,无生态异常出现 |
Ⅱ | 0.2≤ EVI<0.4 | 微度脆弱 | 生态功能较为完整,对各类干扰敏感性较弱,承受生态压力较小,自我恢复能力强,存在潜在的生态异常 |
Ⅲ | 0.4≤ EVI<0.6 | 轻度脆弱 | 生态功能尚可维持,对各类干扰敏感性中等,承受生态压力接近阈值,自我恢复能力较弱,存在少量的生态异常 |
Ⅳ | 0.6≤ EVI<0.8 | 中度脆弱 | 生态功能部分退化,对各类干扰敏感性较强,承受生态压力较大,受损后恢复难度较大,生态异常较多 |
Ⅴ | 0.8≤ EVI ≤1 | 重度脆弱 | 生态功能退化严重,对各类干扰敏感性强,承受生态压力大,受损恢复难度大,生态异常集中连片出现 |
Tab. 6
Impact of single factor on ecological vulnerability
生态脆弱性因子 | q统计值 | p值 |
---|---|---|
地形起伏度 | 0.135 6 | 2.93E-10 |
高程 | 0.515 2 | 6.12E-10 |
地表湿度 | 0.417 5 | 3.37E-10 |
大气温度 | 0.472 6 | 1.20E-10 |
年均降雨量 | 0.560 0 | 6.66E-10 |
人口密度 | 0.000 0 | 1 |
地表干度 | 0.561 3 | 5.19E-10 |
地表温度 | 0.214 9 | 9.49E-10 |
经济密度 | 0.200 9 | 3.98E-10 |
景观干扰度 | 0.237 9 | 5.29E-10 |
植被覆盖度 | 0.063 7 | 5.94E-10 |
[1] | 张学玲, 余文波, 蔡海生, 等. 区域生态环境脆弱性评价方法研究综述[J]. 生态学报, 2018, 38(16):5970-5981. |
[Zhang X L, Yu W B, Cai H S, et al. Review of the evaluation methods of regional eco-environmental vulnerability[J]. Acta Ecologica Sinica, 2018, 38(16):5970-5981.] DOI:10.5846/stxb201708211502 | |
[2] | 王让会, 樊自立. 塔里木河流域生态脆弱性评价研究[J]. 干旱环境监测, 1998, 12(4):218-221,223. |
[Wang R H, Fan Z L. Study on ecological vulnerability assessment in Tarim River Basin[J]. Arid Environmental Monitoring, 1998, 12(4):218-221,223.] DOI:10.1007/s11769-001-0025-1 | |
[3] | 廖炜, 李璐, 吴宜进, 等. 丹江口库区土地利用变化与生态环境脆弱性评价[J]. 自然资源学报, 2011, 26(11):1879-1889. |
[Liao W, Li L, Wu Y J, et al. Land use change and eco-environmental vulnerability evaluation in the Danjiangkou Reservoir area[J]. Journal of Natural Resources, 2011, 26(11):1879-1889.] DOI:10.11849/zrzyxb.2011.11.007 | |
[4] | 吴琼. 基于景观格局的辽宁海岸带生态脆弱性评价[D]. 大连: 辽宁师范大学, 2014. |
[Wu Q. Assessment of ecological vulnerability of Liaoning coastal zone on landscape pattern[D]. Dalian: Liaoning Normal University, 2014.] DOI:10.7666/d.Y2613064 | |
[5] | 姚建, 艾南山, 丁晶. 中国生态环境脆弱性及其评价研究进展[J]. 兰州大学学报, 2003, 39(3):77-80. |
[Yao J, Ai N S, Ding J. Progress in the studies of eco-environmental fragility and assessment in China[J]. Journal of Lanzhou University, 2003, 39(3):77-80.] DOI:10.13885/j.issn.0455-2059.2003.03.021 | |
[6] | 徐广才, 康慕谊, 贺丽娜, 等. 生态脆弱性及其研究进展[J]. 生态学报, 2009, 29(5):2578-2588. |
[Xu G C, Kang M Y, He L N, et al. Advances in research on ecological vulnerability[J]. Acta Ecologica Sinica, 2009, 29(5):2578-2588.] DOI:10.3321/j.issn:1000-0933.2009.05.047 | |
[7] | 田海宁. 汉中市生态脆弱性评价及空间分布规律研究[J]. 中国农业资源与区划, 2017, 38(3):148-152. |
[Tian H N. The ecological vulnerability assessment and spatial distribution of Hanzhong city[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(3):148-152.] DOI:10.7621/cjarrp.1005-9121.20170323 | |
[8] | Furlan A, Bonotto D M, Gumiere S J. Development of environmental and natural vulnerability maps for Brazilian coastal at São Sebastião in São Paulo State[J]. Environmental Earth Sciences, 2011, 64(3):659-669. DOI:10.1007/s12665-010-0886-7 |
[9] | 于伯华, 吕昌河. 青藏高原高寒区生态脆弱性评价[J]. 地理研究, 2011, 30(12):2289-2295. |
[Yu B H, (Lü/lv/lu/lyu) C H. Assessment of ecological vulnerability on the Tibetan Plateau[J]. Geographical Research, 2011, 30(12):2289-2295.] DOI:10.11821/yj2011120016 | |
[10] | 吴春生, 黄翀, 刘高焕, 等. 基于模糊层次分析法的黄河三角洲生态脆弱性评价[J]. 生态学报, 2018, 38(13):4584-4595. |
[Wu C S, Huang C, Liu G H, et al. Assessment of ecological vulnerability in the Yellow River Delta using the Fuzzy Analytic Hierarchy Process[J]. Acta Ecologica Sinica, 2018, 38(13):4584-4595.] DOI:10.5846/stxb201706071037 | |
[11] | Zou T H, Chang Y X, Chen P, et al. Spatial-temporal variations of ecological vulnerability in Jilin Province (China), 2000 to 2018[J]. Ecological Indicators, 2021, 133:108429. DOI:10.1016/j.ecolind.2021.108429 |
[12] | Acosta-Michlik L, Espaldon V. Assessing vulnerability of selected farming communities in the Philippines based on a behavioural model of agent’s adaptation to global environmental change[J]. Global Environmental Change, 2008, 18(4):554-563. DOI:10.1016/j.gloenvcha.2008.08.006 |
[13] |
温晓金, 杨新军, 王子侨. 多适应目标下的山地城市社会—生态系统脆弱性评价[J]. 地理研究, 2016, 35(2):299-312.
doi: 10.11821/dlyj201602008 |
[Wen X J, Yang X J, Wang Z Q. Assessment on the vulnerability of social-ecological systems in a mountainous city depending on multi-targets adaption[J]. Geographical Research, 2016, 35(2):299-312.] DOI:10.11821/dlyj201602008 | |
[14] | Polsky C, Neff R, Yarnal B. Building comparable global change vulnerability assessments: The vulnerability scoping diagram[J]. Global Environmental Change, 2007, 17(3/4):472-485. DOI:10.1016/j.gloenvcha.2007.01.005 |
[15] |
李永化, 范强, 王雪, 等. 基于SRP模型的自然灾害多发区生态脆弱性时空分异研究——以辽宁省朝阳县为例[J]. 地理科学, 2015, 35(11):1452-1459.
doi: 10.13249/j.cnki.sgs.2015.011.1452 |
[Li Y H, Fan Q, Wang X, et al. Spatial and temporal differentiation of ecological vulnerability under the frequency of natural hazard based on SRP model: A case study in Chaoyang County[J]. Scientia Geographica Sinica, 2015, 35(11):1452-1459.] DOI:10.13249/j.cnki.sgs.2015.11.014 | |
[16] | 张泽, 胡宝清, 丘海红, 等. 基于山江海视角与SRP模型的桂西南-北部湾生态环境脆弱性评价[J]. 地球与环境, 2021, 49(3):297-306. |
[Zhang Z, Hu B Q, Qiu H H, et al. Ecological environment vulnerability assessment of southwest guangxi-beibu gulf based on the perspective of mountains, rivers and sea and SRP model[J]. Earth and Environment, 2021, 49(3):297-306.] DOI:10.14050/j.cnki.1672-9250.2021.49.064 | |
[17] |
王铁军, 赵礼剑, 张溪. 青藏高原生态屏障区生态环境综合评价方法探讨[J]. 测绘通报, 2018(9):112-116.
doi: 10.13474/j.cnki.11-2246.2018.0291 |
[Wang T J, Zhao L J, Zhang X. Discussion on the method of ecotope comprehensive evaluation for Tibet Plateau ecological shelter zone[J]. Bulletin of Surveying and Mapping, 2018(9):112-116.] DOI:10.13474/j.cnki.11-2246.2018.0291 | |
[18] | Cao C X, Yang B, Xu M, et al. Evaluation and analysis of post-seismic restoration of ecological security in Wenchuan using remote sensing and GIS[J]. Geomatics, Natural Hazards and Risk, 2016, 7(6):1919-1936. DOI:10.1080/19475705.2015.1084952 |
[19] | 刘晶晶. 集中连片特困区生态环境脆弱性评价研究——以大别山片区为例[D]. 武汉: 华中师范大学, 2019. |
[Liu J J. Study on evaluation of eco-environmental vulnerability in contiguous special poverty-stricken areas in the case of Ta-pieh Mountains area[D]. Wuhan: Central China Normal University, 2019.] DOI:10.27159/d.cnki.ghzsu.2019.000103 | |
[20] | 徐静, 王泽宇. 中国陆海统筹绩效时空分异及影响因素——基于脆弱性视角的分析[J]. 地域研究与开发, 2019, 38(2):25-30. |
[Xu J, Wang Z Y. Spatial and temporal differentiation of China’s land-sea coordination performance and influencing factors: Based on vulnerability perspective[J]. Areal Research and Development, 2019, 38(2):25-30.] DOI:10.3969/j.issn.1003-2363.2019.02.005 | |
[21] | 沈文娟, 李明诗. 基于长时间序列Landsat影像的南方人工林干扰与恢复制图分析[J]. 生态学报, 2017, 37(5):1438-1449. |
[Shen W J, Li M S. Mapping disturbance and recovery of plantation forests in Southern China using yearly Landsat time series observations[J]. Acta Ecologica Sinica, 2017, 37(5):1438-1449.] DOI:10.5846/stxb201510142074 | |
[22] | Duo A, Zhao W J, Qu X Y, et al. Spatio-temporal variation of vegetation coverage and its response to climate change in North China plain in the last 33 years[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 53:103-117. DOI:10.1016/j.jag.2016.08.008 |
[23] | 朱鹏航, 于瑞宏, 葛铮, 等. 乌梁素海长时序水质变化及其驱动因子[J]. 生态学杂志, 2022, 41(3):546-553. |
[Zhu P H, Yu R H, Ge Z, et al. Long-term changes of water quality and the driving factors of Wuliangsuhai Lake[J]. Chinese Journal of Ecology, 2022, 41(3):546-553.] DOI: 10.13292/j.1000-4890.202202.022 | |
[24] | 田野, 冯启源, 唐明方, 等. 基于生态系统评价的山水林田湖草生态保护与修复体系构建研究——以乌梁素海流域为例[J]. 生态学报, 2019, 39(23):8826-8836. |
[Tian Y, Feng Q Y, Tang M F, et al. Ecological protection and restoration of forest, wetland, grassland and cropland based on the perspective of ecosystem assessment: A case study in Wuliangsuhai Watershed[J]. Acta Ecologica Sinica, 2019, 39(23):8826-8836.] DOI:10.5846/stxb201911222531 | |
[25] | Wang J F, Li X H, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China[J]. International Journal of Geographical Information Science, 2010, 24(1):107-127. DOI:10.1080/13658810802443457 |
[26] |
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
doi: 10.11821/dlxb201701010 |
[Wang J F, Xu C D. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1):116-134.] DOI:10.11821/dlxb201701010 | |
[27] | Wang L, Diao C Y, Xian G, et al. A summary of the special issue on remote sensing of land change science with Google earth engine[J]. Remote Sensing of Environment, 2020, 248:112002. DOI:10.1016/j.rse.2020.112002 |
[28] | Gorelick N, Hancher M, Dixon M, et al. Google earth engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202:18-27. DOI: 10.1016/j.rse.2017.06.031 |
[29] | 鲁飞飞, 张勇, 李雪, 等. 乌梁素海流域湿地保护与恢复建设的探讨[J]. 林业资源管理, 2019(5):23-27,67. |
[Lu F F, Zhang Y, Li X, et al. Discussion on wetland protection and restoration along Wuliangsuhai Basin[J]. Forest Resources Management, 2019(5):23-27,67.] DOI:10.13466/j.cnki.lyzygl.2019.05.005 | |
[30] | 柳新伟, 周厚诚, 李萍, 等. 生态系统稳定性定义剖析[J]. 生态学报, 2004, 24(11):2635-2640. |
[Liu X W, Zhou H C, Li P, et al. A conceptual analysis of ecosystem stability[J]. Acta Ecologica Sinica, 2004, 24(11):2635-2640.] DOI: 10.3321/j.issn:1000-0933.2004.11.042 | |
[31] | 乔青, 高吉喜, 王维, 等. 生态脆弱性综合评价方法与应用[J]. 环境科学研究, 2008, 21(5):117-123. |
[Qiao Q, Gao J X, Wang W, et al. Method and application of ecological frangibility assessment[J]. Research of Environmental Sciences, 2008, 21(5):117-123.] DOI:10.13198/j.res.2008.05.119.qiaoq.021 | |
[32] | Jarvis A, Reuter H I, Nelson A, et al. Hole-filled SRTM for the globe Version 4[J]. available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org ), 2008, 15(25-54):5 |
[33] | Yang J E, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8):3907-3925. DOI:10.5 194/essd-13-3907-2021 |
[34] | He Q A, Wang M, Liu K, et al. GPRChinaTemp1km: A high-resolution monthly air temperature data set for China (1951-2020) based on machine learning[J]. Earth System Science Data, 2022, 14(7):3273-3292. DOI:10.5194/essd-14-3273-2022 |
[35] | Doxsey-Whitfield E, Macmanus K, Adamo S B, et al. Taking advantage of the improved availability of census data: a first look at the gridded population of the world, version 4[J]. Papers in Applied Geography, 2015, 1(3): 226-234. DOI:10.1080/23754931.2015.1014272 |
[36] | Xu X. China GDP spatial distribution kilometer grid data set[J]. Data Registration and publishing System of Resources and Environmental Sciences Data Center, Chinese Academy of Sciences, 2017, 10:2017121102. DOI: 10.12078/2017121102 |
[37] | 张伟, 李爱农. 基于DEM的中国地形起伏度适宜计算尺度研究[J]. 地理与地理信息科学, 2012, 28(4):8-12. |
[Zhang W, Li A N. Study on the optimal scale for calculating the relief amplitude in China based on DEM[J]. Geography and Geo-Information Science, 2012, 28(4):8-12.] DOI:CNKI:SUN:DLGT.0.2012-04-003 | |
[38] | 崔杨林, 高祥, 董斌, 等. 县域景观生态风险评价[J]. 浙江农林大学学报, 2021, 38(3):541-551. |
[Cui Y L, Gao X, Dong B, et al. Landscape ecological risk assessment of county[J]. Journal of Zhejiang A&F University, 2021, 38(3):541-551.] DOI:10.11833/j.issn.2095-0756.20200461 | |
[39] | 谢花林. 基于景观结构的土地利用生态风险空间特征分析——以江西兴国县为例[J]. 中国环境科学, 2011, 31(4):688-695. |
[Xie H L. Spatial characteristic analysis of land use eco-risk based on landscape structure: A case study in the Xingguo County, Jiangxi Province[J]. China Environmental Science, 2011, 31(4):688-695.] DOI:CNKI:SUN:ZGHJ.0.2011-04-033 | |
[40] | 荆玉平, 张树文, 李颖. 基于景观结构的城乡交错带生态风险分析[J]. 生态学杂志, 2008, 27(2):229-234. |
[Jing Y P, Zhang S W, Li Y. Ecological risk analysis of rural-urban ecotone based on landscape structure[J]. Chinese Journal of Ecology, 2008, 27(2):229-234.] DOI:CNKI:SUN:STXZ.0.2008-02-017 | |
[41] | 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24):7853-7862. |
[Xu H Q. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013, 33(24):7853-7862.] DOI:10.5846/stxb201208301223 | |
[42] | Ali Baig M H, Zhang L F, Shuai T, et al. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance[J]. Remote Sensing Letters, 2014, 5(5):423-431. DOI:10.1080/2150704x.2014.915434 |
[43] | Xu H. A new index for delineating built-up land features in satellite imagery[J]. International Journal of Remote Sensing, 2008, 29(14):4269-4276. DOI:10.1080/01431160802039957 |
[44] | 巴彦淖尔市地方志编纂委员会. 巴彦淖尔年鉴-2020[M]. 北京: 九州出版社, 2020. |
[Bayannaoer Local Chronicles Compilation Committee. Bayannaoer Yearbook[M]. Beijing: Kyushu Press, 2020.] DOI:10.38624/y.cnki.ybyze.2021.000001 | |
[45] |
王钰, 胡宝清. 西江流域生态脆弱性时空分异及其驱动机制研究[J]. 地球信息科学学报, 2018, 20(7):947-956.
doi: 10.12082/dqxxkx.2018.170633 |
[Wang Y, Hu B Q. Spatial and temporal differentiation of ecological vulnerability of Xijiang River in Guangxi and its driving mechanism[J]. Journal of Geo-information Science, 2018, 20(7):947-956.] DOI:10.12082/dqxxkx.2018.170633 | |
[46] | Liu Z Z, Wang H, Li N, et al. Spatial and temporal characteristics and driving forces of vegetation changes in the Huaihe River Basin from 2003 to 2018[J]. Sustainability, 2020, 12(6):2198. DOI:10.3390/su12062198 |
[47] | 徐涵秋, 邓文慧. MRSEI指数的合理性分析及其与RSEI指数的区别[J]. 遥感技术与应用, 2022, 37(1):1-7. |
[Xu H Q, Deng W H. Rationality analysis of MRSEI and its difference with RSEI[J]. Remote Sensing Technology and Application, 2022, 37(1):1-7.] DOI:10.11873/j.issn.1004-0323.2022.1.0001 | |
[48] | Mann H B. Nonparametric tests against trend[J]. Econometrica, 1945, 13(3):245. DOI:10.2307/1907187 |
[49] | 蔡博峰, 于嵘. 基于遥感的植被长时序趋势特征研究进展及评价[J]. 遥感学报, 2009, 13(6):1170-1186. |
[Cai B F, Yu R. Advance and evaluation in the long time series vegetation trends research based on remote sensing[J]. Journal of Remote Sensing, 2009, 13(6):1170-1186.] DOI:10.3321/j.issn:1007-4619.2009.06.014 | |
[50] | Wang D C, Gong J H, Chen L D, et al. Spatio-temporal pattern analysis of land use/cover change trajectories in Xihe watershed[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 14(1):12-21. DOI:10.1016/j.jag.2011.08.007 |
[51] | 张保龙, 于亮亮, 赵宇新, 等. 乌梁素海流域近60年气候变化特征研究[J]. 宁夏工程技术, 2021, 20(4):289-294,303. |
[Zhang B L, Yu L L, Zhao Y X, et al. Analysis of climate change characteristics in wuliangsu lake basin in recent 60 years[J]. Ningxia Engineering Technology, 2021, 20(4):289-294,303.] DOI:10.3969/j.issn.1671-7244.2021.04.002 | |
[52] | 迟文峰, 匡文慧, 党晓宏, 等. 基于遥感的内蒙古地级市土地覆盖结构时空变化特征分析[J]. 遥感技术与应用, 2019, 34(1):33-45. |
[Chi W F, Kuang W H, Dang X H, et al. Spatio-temporal characteristics of urban land cover structures in prefecture-level cities of inner Mongolia autonomous region based on remote sensing imagery[J]. Remote Sensing Technology and Application, 2019, 34(1):33-45.] DOI:10.11873/j.issn.1004-0323.2019.1.0033 | |
[53] | 王新民, 温挨树, 王海军, 等. 自然与人工创造的奇迹乌梁素海流域生态治理启示录[J]. 人与生物圈, 2021(1):49-53. |
[Wang X M, Wen A S, Wang H J, et al. Miracle created by nature and man-made: Revelation of ecological management in Wuliangsuhai Basin[J]. Man and the Biosphere, 2021(1):49-53.] DOI:10.3969/j.issn.1009-1661.2021.01.015 | |
[54] | 霍亮. 黄河流域乌梁素海生态修复与保护的实践[C]. 2021第九届中国水生态大会论文集.西安, 2021:221-224. |
[Huo T X, Huo L. Practice of ecological restoration and protection in Wuliangsuhai of Yellow River Basin[C]. Xi'an, Shaanxi, China, 2021:221-224.] DOI:10.26914/c.cnkihy.2021.024688 | |
[55] | Beroya-Eitner M A. Ecological vulnerability indicators[J]. Ecological Indicators, 2016, 60:329-334. DOI:10.1016/j.ecolind.2015.07.001 |
[56] |
Turner B L 2nd, Kasperson R E, Matson P A, et al. A framework for vulnerability analysis in sustainability science[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14):8074-8079. DOI:10.1073/pnas.1231335100
pmid: 12792023 |
[57] | 林妍敏, 南雄雄, 胡志瑞, 等. 西北典型生态脆弱区植被覆盖度时空变化及其生态安全评价:以宁夏贺兰山为例[J]. 生态与农村环境学报, 2022, 38(5):599-608. |
[Lin Y M, Nan X X, Hu Z R, et al. Fractional vegetation cover change and its evaluation of ecological security in the typical vulnerable ecological region of northwest China: Helan Mountains in Ningxia[J]. Journal of Ecology and Rural Environment, 2022, 38(5):599-608.] DOI:10.19741/j.issn.1673-4831.2021.0461 | |
[58] |
张泽, 胡宝清, 丘海红, 等. 桂西南喀斯特-北部湾海岸带生态环境脆弱性时空分异与驱动机制研究[J]. 地球信息科学学报, 2021, 23(3):456-466.
doi: 10.12082/dqxxkx.2021.200278 |
[Zhang Z, Hu B Q, Qiu H H, et al. Spatio-temporal differentiation and driving mechanism of ecological environment vulnerability in southwest Guangxi Karst-beibu Gulf coastal zone[J]. Journal of Geo-information Science, 2021, 23(3):456-466.] DOI: 10.12082/dqxxkx.2021.200278 | |
[59] | Li B, Tao S, Dawson R W. Relations between AVHRR NDVI and ecoclimatic parameters in China[J]. International Journal of Remote Sensing, 2002, 23(5):989-999. DOI:10.1080/014311602753474192 |
[60] | Wu T S, Feng F, Lin Q A, et al. A spatio-temporal prediction of NDVI based on precipitation: An application for grazing management in the arid and semi-arid grasslands[J]. International Journal of Remote Sensing, 2020, 41(6):2359-2373. DOI:10.1080/01431161.2019.1688418. |
[61] | Chen L D, Wei W, Fu B J, et al. Soil and water conservation on the Loess Plateau in China: Review and perspective[J]. Progress in Physical Geography: Earth and Environment, 2007, 31(4):389-403. DOI:10.1177/0309133307081290 |
[62] | Zhang Y H, Ye A Z. Spatial and temporal variations in vegetation coverage observed using AVHRR GIMMS and Terra MODIS data in the mainland of China[J]. International Journal of Remote Sensing, 2020, 41(11):4238-4268. DOI:10.1080/01431161.2020.1714781 |
[63] | El-Zein A, Tonmoy F N. Assessment of vulnerability to climate change using a multi-criteria outranking approach with application to heat stress in Sydney[J]. Ecological Indicators, 2015, 48:207-217. DOI:10.1016/j.ecolind.2014.08.012 |
[64] | 汪东川, 陈星, 孙志超, 等. 格尔木长时间序列遥感生态指数变化监测[J]. 生态学报, 2022, 42(14):5922-5933. |
[Wang D C, Chen X, Sun Z C, et al. Monitoring of changes in the ecological index of long-time sequence Remote Sensing in Golmud, Qinghai Province[J]. Acta Ecologica Sinica, 2022, 42(14):5922-5933.] DOI:10.5846/stxb202104261102 |
[1] | FAN Lanxin, WU Yanhong, CHI Haojing, ZHENG Siqi, YAN Jiaheng, REN Yongkang, SUN Zhonghua. Detecting Spatiotemporal Changes of Freshwater in Northwest China under a Warm-Wetting Climate using Remote Sensing [J]. Journal of Geo-information Science, 2023, 25(9): 1842-1854. |
[2] | YIN Wenping, ZHANG Xin, XIE Fei, FAN Hui, CHEN Fei. Spatiotemporal Evolution and the Influence Mechanism of Public Opinion on the Occurrence of Northward Migration of Wild Elephants [J]. Journal of Geo-information Science, 2023, 25(4): 794-808. |
[3] | YIN Xiong, CHEN Bangqian, GU Xiaowei, YUN Ting, WU Zhixiang, CHEN Yue, LAI Hongyan, KOU Weili. Rapid Monitoring of Tropical Forest Disturbance in Hainan Island Based on GEE Platform and LandTrendr Algorithm [J]. Journal of Geo-information Science, 2023, 25(10): 2093-2106. |
[4] | GAN Congcong, QIU Bingwen, ZHANG Jianyang, YAO Chengxin, YE Zhiyan, HUANG Heng, HUANG Yingze, PENG Yufeng, LIN Yizhen, LIN Duoduo, SU Zhonghao. Mapping Paddy Rice Planting Patterns based on Sentinel-1/2 [J]. Journal of Geo-information Science, 2023, 25(1): 153-162. |
[5] | ZHANG Xinyue, GAO Xiaolu, CHAI Qi, SONG Dunjiang. Analyzing Spatial-Temporal Pattern and Climate Factors of Blue-Green Space in Urban Built-Up Areas in Prefecture-level Cities in China [J]. Journal of Geo-information Science, 2023, 25(1): 190-207. |
[6] | ZHANG Ke, WEI Wei, ZHOU Jie, YIN Li, XIA Junnan. Spatial-temporal Evolution Characteristics and Mechanism of “Three-Function Space” in the Three-Rivers Headwaters' Region from 1992 to 2020 [J]. Journal of Geo-information Science, 2022, 24(9): 1755-1770. |
[7] | HOU Yue, XU Chengdong, LIU Wei, YIN Qian. Prediction of Nitrogen Emission in the Upper Reaches of the Huai River Basin Under Climate Change Scenarios [J]. Journal of Geo-information Science, 2022, 24(8): 1558-1574. |
[8] | WANG Xiaolei, SHI Shouhai. Spatio-temporal Changes of Vegetation in the Yellow River Basin and Related Effect of Landform based on GEE [J]. Journal of Geo-information Science, 2022, 24(6): 1087-1098. |
[9] | GENG Jiachen, SHEN Shi, CHENG Changxiu. Spatio-temporal Evolution and the Multi-scale Socio-economic Influencing Mechanism of PM2.5 in the Yellow River Basin during the China's 13th Five-Year Plan [J]. Journal of Geo-information Science, 2022, 24(6): 1163-1175. |
[10] | YAO Jinyi, WANG Juanle, YAN Xinrong, WEI Haishuo, Altansukh Ochir, Davaadorj Davaasuren. Water Information Extraction of Selenga River Basin in Mongolia based on Deep Neural Network [J]. Journal of Geo-information Science, 2022, 24(5): 1009-1017. |
[11] | ZHANG Yongkai, YANG Chunyue, ZHANG Wanjun, BI Xiaomei. Analysis on the Temporal and Spatial Evolution of Population Life Expectancy and Influencing Factors in the Yellow River Basin [J]. Journal of Geo-information Science, 2022, 24(5): 902-913. |
[12] | LIANG Lifeng, ZENG Wenxia, SONG Yuexiang, SHAO Zhenfeng, LIU Xiujuan. Urban Comprehensive Vitality Evaluation and Influencing Factors Analysis Considering Population Agglomeration and Emotional Intensity [J]. Journal of Geo-information Science, 2022, 24(10): 1854-1866. |
[13] | XIONG Haoli, ZHOU Xiaocheng, WANG Xiaoqin, CUI Yajun. Mapping the Spatial Distribution of Tea Plantations with 10 m Resolution in Fujian Province Using Google Earth Engine [J]. Journal of Geo-information Science, 2021, 23(7): 1325-1337. |
[14] | PENG Yanfei, LI Zhongqin, YAO Xiaojun, MOU Jianxin, HAN Weixiao, WANG Panpan. Area Change and Cause Analysis of Bosten Lake based on Multi-source Remote Sensing Data and GEE Platform [J]. Journal of Geo-information Science, 2021, 23(6): 1131-1153. |
[15] | JIANG Yilan, CHEN Baowang, HUANG Yufang, CUI Jiaqi, GUO Yulong. Crop Planting Area Extraction based on Google Earth Engine and NDVI Time Series Difference Index [J]. Journal of Geo-information Science, 2021, 23(5): 938-947. |
|