ARTICLES

Distribution and Potential Degradation Risk Evaluation of Marsh Wetland in the Mt. Qomolangma National Nature Reserve

Expand
  • 1. Sichuan Spatial Information Industry Development Co. Ltd, Chengdu 610041, China;
    2. Tibet Autonomous Region Science & Information Technology Institute, Lhasa 850001, China;
    3. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China;
    4. Key Lab. of Geo-detection & Information Techniques of Ministry of Education, Chengdu University of Technology, Chengdu 610059, China

Received date: 2011-03-09

  Revised date: 2011-09-21

  Online published: 2011-10-25

Abstract

The Mt. Qomolangma National Nature Reserve was established on 18 March, 1989. In March 2005, it was listed in the global biosphere protected area network, for the marsh wetland there is very important to the environment of this region. In this paper, we took the Mt. Qomolangma National Nature Reserve as the study area, selected all 23 MODIS NDVI images of 2009, used the HANTS algorithm based on Fourier transform to remove the interference of the cloud and reconstruct NDVI time series images. The spectral angle mapper (SAM) was used to extract marsh wetland of the study area according to the different phenological characters between marsh wetland and other surface features. The area of marsh wetland is 2481.13km2, which account for 6.88% of the total study area. Its distribution in Tingri County was the most abundant, which account for 36.85% of the total marsh wetland area|followed by Dingjie, Nyalam and Gyirong counties, the proportions are 25.79%, 24.5% and 12.86% respectively. According to the characteristics of the study area, we evaluated the potential degradation risk of marsh wetland in the study area by selecting annual mean temperature linear trend as natural risk factor, influences of settlements and roads as artificial risk factors which are based on distance decay theory. This paper divided general risk assessed results mainly into five grades, that is, the lowest risk, lower risk, moderate risk, higher risk, and the highest risk. The proportions of the total marsh wetland area in the study area are 7.39%, 13.61%, 24.72%, 31.43% and 22.84% respectively.

Cite this article

MA Fei, KAN Aike, LI Jingji, GUAN Lei, CHEN Xiaoqin . Distribution and Potential Degradation Risk Evaluation of Marsh Wetland in the Mt. Qomolangma National Nature Reserve[J]. Journal of Geo-information Science, 2011 , 13(5) : 594 -600,610 . DOI: 10.3724/SP.J.1047.2011.00594

References

[1] 孙广友. 中国湿地科学的进展与展望[J]. 地球科学进展, 2000, 15(6): 666-672.

[2] 白军红, 欧阳华, 徐惠凤, 等. 青藏高原湿地研究进展[J]. 地理科学进展, 2004, 23(4): 1-9.

[3] 许辉熙, 何政伟, 但尚铭, 等. 基于EOS/MODIS的若尔盖高原湿地定量遥感研究[J]. 冰川冻土, 2007, 29(3): 450-455.

[4] 王根绪, 李元寿, 王一博, 等. 近40年来青藏高原典型高寒湿地系统的动态变化[J]. 地理学报, 2007, 62(5): 481-491.

[5] 王春连, 张镱锂, 王兆锋, 等. 拉萨河流域湿地系统景观格局多尺度分析[J]. 自然资源学报, 2010, 32(9): 1634-1642.

[6] 陈桂琛, 黄志伟, 卢学锋, 等. 青海高原湿地特征及其保护[J]. 湿地科学, 2003, 1(2): 122-127.

[7] 王根绪, 丁永健, 王建, 等. 近15年来长江黄河源区的土地覆被变化[J]. 地理学报, 2004, 59(2): 163-173.

[8] 张镱锂, 李秀彬, 傅小锋, 等. 拉萨城市用地变化分析[J]. 地理学报, 2000, 55(4): 395-406.

[9] 马飞, 李景吉, 彭培好, 等. 珠穆朗玛峰国家自然保护区南北坡植被覆盖变化研究[J]. 地理科学进展, 2010, 29(11): 1427-1432.

[10] 珠穆朗玛峰地区科学考察报告1966~1968(自然地理)[M]. 北京: 科学出版社, 1975,1-3, 172-182.

[11] 李国庆, 阚瑷珂, 王绪本, 等. 珠穆朗玛峰生物圈保护区湿地空间分布及变化研究[J]. 湿地科学, 2009, 7(4): 289-298.

[12] 李国庆, 阚瑷珂, 王绪本, 等. 珠穆朗玛峰国家级自然保护区退化湿地分布及影响因素研究[J]. 湿地科学, 2010, 8(2): 110-114.

[13] 裘善文, 孙广友, 夏玉梅. 三江平原中东部沼泽湿地形成及其演化趋势的探讨[J]. 湿地科学, 2008, 6(2): 148-159.

[14] 王丹, 姜小光, 唐伶俐, 等. 利用时间序列傅立叶分析重构无云NDVI图像[J]. 国土资源遥感, 2005, 2: 29-32.

[15] 罗磊, 青藏高原湿地退化的气候背景分析[J]. 湿地科学, 2005, 3(3): 190-199.

[16] 杨续超, 张镱锂, 张玮, 等. 珠穆朗玛峰地区近34年来气候变化[J]. 地理学报, 2006, 61(7): 687-696.

[17] 王长科, 王跃思, 张安定, 等. 若尔盖高原湿地资源及其保护对策[J]. 水土保持通报, 2001, 21(5): 20-40.

[18] 次旦伦珠. 珠穆朗玛峰自然保护区概况[J]. 中国藏学, 1997, 1: 3-22.

[19] 廖顺宝, 李泽辉. 气温数据栅格化中的几个具体问题[J]. 气象科技, 2004, 32(5): 352-356.

[20] 廖顺宝, 李泽辉, 游松财. 气温数据栅格化的方法及其比较[J]. 资源科学, 2003, 25(6): 75-80.

[21] 丁明军, 沈振西, 张镱锂, 等. 青藏公路与铁路沿途1981-2001年植被覆盖变化[J]. 资源科学, 2005, 27(5): 128-133.

[22] Gregory D. Distance Decay[M]. //: Johnston R J, Gregory D, Smith D M (Ed.). The Dictionary of Human Geography (2nd Ed.). Oxford: Blackwell, 1988: 110-111.

[23] Eldridge J D, Jones J P. Warpedspace: A Geography of Distance Decay[J]. Professional Geographer, 1991, 43: 500-511.

[24] 张捷, 都金康, 周寅康, 等. 自然观光旅游地客源市场的空间结构研究——以九寨沟及比较风景区为例[J]. 地理学报, 1999, 54(4): 357-364.

[25] 王雪梅, 李新, 马明国. 干旱区内陆河流域人口统计数据的空间化——以黑河流域为例[J]. 干旱区资源与环境, 2007, 21(6): 39-47.

[26] 刘小平, 黎夏, 叶嘉安. 基于多智能体系统的空间决策行为及土地利用格局演变的模拟[J]. 中国科学D辑地球科学2006, 36(11): 1027-1036.

[27] 李月辉, 胡远满, 李秀珍, 等. 道路生态研究进展[J]. 应用生态学报, 2003, 14(3): 447-452.

[28] 章家恩, 徐琪. 道路的生态学影响及其生态建设[J]. 生态学杂志, 1995, 14(6): 74-77.

[29] 吴群, 温修春, 唐焱, 等. 模型法在农用地基准地价评估中的应用——以江苏省泰兴市为例[J]. 资源科学, 2004, 26(5): 68-73.

[30] 吴晋峰, 包浩生. 旅游流距离衰减现象演绎研究[J]. 人文地理, 2005, 2: 62-65.

[31] 牛振国, 宫鹏, 程晓, 等. 中国湿地初步遥感制图及相关地理特征分析[J]. 中国科学D辑: 地球科学, 2009, 39: 188-203.

[32] 赵魁义, 王德斌, 宋海远. 西藏沼泽的初步研究[J].见: 陈宜瑜主编. 中国沼泽研究, 1988,227-235.
Outlines

/