2012 , Vol. 14 >Issue 1: 62 - 66

ARTICLES

Uncertainty Analysis of Different DEM Interpolation Methods Based on AMMI Model

Expand
• 1. Key Laboratory of Virtual Geographical Environment, Ministry of Education, Nanjing Normal University, Nanjing 210046, China;
2. School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, China

Revised date: 2012-01-08

Online published: 2012-02-24

### Abstract

Analysis of evaluation of interpolation models is a hot topic in the DEM interpolation studies. Most studies focused on the interpolation model in the last decades, while ignored the influencing factors between the interpolation models and environments. That is to say, on the one side, different interpolation models influence the accuracy of the analysis result; on the other side, difference environments also influence the accuracy of a certain interpolation model. In order to analysis the applicability of different interpolation methods in different environments, this paper selected test areas under different geomorphic types, and used the AMMI model to analyse the accuracy of the different interpolation models and the applicability of the studied models to different geomorphic types. The experiment results showed that the AMMI model could test the influencing factors between the interpolation models and the environments. Taking the test of this paper as an example, in the Northern Shaanxi region, the ordinary Kriging model is the best choice in the DEM construction. Finally, by analyzing the correlation coefficient between the environment coefficient and several landform parameters, it can be found that the slope gradient could represent the first environment coefficient.

ZHAO Mingwei, TANG Guoan, TIAN Jian . Uncertainty Analysis of Different DEM Interpolation Methods Based on AMMI Model[J]. Journal of Geo-information Science, 2012 , 14(1) : 62 -66 .

### References

[1] 李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社,2003,125-126.

[2] 汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005,78-80.

[3] 曹云刚.基于分形理论的DEM数据内插算法研究[J].微计算机信息,2007,23(8):184-185.

[4] 史秋晶,胡伍生.神经网络BP算法在DEM内插中的应用研究[J].现代测绘,2007,30(5):3-5.

[5] 沈涛,李成名,苏山舞.基于水系改进的数字高程模型内插研究[J].中国图象图形学报,2006,11(4):535-539.

[6] Tian-Xiang Yue, Zheng-Ping Du, Dun-Jiang Song. A new method of surface modeling and its application to DEM construction [J]. Geomorphology, 2007(91):161-172.

[7] 岳天祥,杜正平,宋敦江.高精度曲面建模HASM4 [J].中国图象图形学报,2007,12(2):343-348.

[8] 韩富江,刘学军,潘胜玲.DEM内插方法与可视性分析结果的相似性研究[J].地理与地理信息科学,2007,23(1):31-35.

[9] 杨雯,刘洪利,胡卓玮,等.数字高程模型内插方法的可视化对比研究[J].测绘科学,2009,34(7):136-138.

[10] 蒋友谊,黎晓.数字地面模型内插方法的优劣分析[J].西安科技学院学报,2001,21(3):213-216.

[11] 胡海,游涟,胡鹏,等.数字高程内插方法的分析和选择[J].武汉大学学报(信息科学版),2011,36(1):82-85.

[12] 王耀革,朱长青,王志伟.数字高程模型(DEM)的整体误差分析[J].武汉大学学报(信息科学版),2009,34(12):1467-1470.

[13] 王耀革,王志伟,朱长青.DEM误差的空间自相关特征分析[J].武汉大学学报(信息科学版),2008,33(12):1259-1262.

[14] Crossa J, Gauch H G, Zobel R W. Additive main effects and multiplicative interaction analysis of two international maize cultivar trials[J]. Crop Sci, 1990,30:493-500.

[15] 唐启义,冯明光.DPS数据处理系统—实验设计、统计分析及模型优化[M].北京:科学出版社,2006,485-492.

[16] 王磊,杨仕华,谢芙贤,等.AMMI模型及其在作物区试数据分析中的应用[J].应用基础与工程科学学报,1997,5(1):39-46.

[17] 常磊,柴守玺.AMMI模型在旱地春小麦稳定性分析中的应用[J].生态学报,2006,26(11):3678-3684.

[18] 王冬良,陈友根,吕国华.基于AMMI模型的新疆日光温室适应性分析[J].农业工程学报,2005,21(3):148-152.
Options
Outlines

/

 〈 〉