HASM-based Climatic Downscaling Model over China

  • 1. State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 10010, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2012-05-08

  Revised date: 2012-08-20

  Online published: 2012-10-25


Compared with statistical downscaling methods and dynamical downscaling methods, HASM-based downscaling methods, which do not need large-scale predictor, can directly create high-resolution climatic surfaces under GCM scenarios. HASM downscaling methods separate future climate elements into climate base value and prospect climatic change value. This method is termed HASM-Constant Coefficient Downscaling Model (HASM-CDM) because climatic base value is fitted by global constant regression model and climatic change value is interpolated by HASM. Although HASM can obtain higher accuracy than other classical methods, precipitation base value fitted by (HASM-CDM) lost spatial non-stationary features of precipitation, which decreases the accuracy of precipitation simulation. The relationship between precipitation and auxiliary variables such as DEM and some topographical factors may change according to geographical location which can not be represented by HASM-CDM. HASM-Spatially Variable Coefficient Downscaling Model (HASM-SVDM) was developed which integrated with spatially variable coefficient regression model and data transformation in this paper. HASM-SVDM uses variable coefficient regression and data transformation to solve accuracy problem of climatic base value. The mean annual temperature (MAT) and mean annual precipitation (MAP) are constructed under different scenarios of HadCM3 A1Fi, A2a and B2a during the periods T1 (1961-1990), T2 (2010-2039), T3 (2040-2069) and T4 (2070-2099) by HASM downscaling models. The results show that HASM-constant coefficient downscaling model integrated with global linear model is applicable to the temperature downscaling simulation, while HASM-spatially variable coefficient downscaling model improves spatial non-stationary base value, and is appropriate for the precipitation downscaling modeling at the national level.

Cite this article

WANG Chen-Liang, YUE Tian-Xiang-*, FAN Ze-Meng, DIAO Na, SUN Xiao-Fang . HASM-based Climatic Downscaling Model over China[J]. Journal of Geo-information Science, 2012 , 14(5) : 599 -610 . DOI: 10.3724/SP.J.1047.2012.00599


[1] Pongratz J, Lobell D B, Cao L, et al. Crop yields in a geoengineered climate[J]. Nature Climate Change, 2012,2(2):101-105.

[2] Lobell D B, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980[J]. Science, 2011,333(6042):616-620.

[3] Michael G, Harald P, Andreas F, et al. Continent-wide response of mountain vegetation to climate change[J]. Nature Climate Change, 2012,2(2):111-115.

[4] Zhao M S, Running S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 2010,329(5994):940-943.

[5] 吴绍洪,赵宗慈. 气候变化和水的最新科学认知[J]. 气候变化研究进展,2009,5(3):125-133.

[6] Thatcher M, Hurley P. A customisable downscaling approach for local-scale meteorological and air pollution forecasting: Performance evaluation for a year of urban meteorological forecasts[J]. Environmental Modelling & Software, 2010,25(1):82-92.

[7] Yue T X, Fan Z M, Chen C F, et al. Surface modelling of global terrestrial ecosystems under three climate change scenarios[J]. Ecological Modelling, 2011,222(14):2342-2361.

[8] Mearns L O, Rosenzweig C, Goldberg R. Mean and variance change in climate scenarios: Methods, agricultural applications, and measures of uncertainty[J]. Climatic Change, 1997,35(4):367-396.

[9] Fowler H J, Blenkinsop S, Tebaldi C. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling[J]. International Journal of Climatology, 2007,27(12):1547-1578.

[10] Van Vliet M T H, Blenkinsop S, Burton A, et al. A multi-model ensemble of downscaled spatial climate change scenarios for the Dommel catchment, Western Europe[J]. Climatic Change, 2012,111(2):249-277.

[11] Giorgi F, Mearns L O. Introduction to special section: Regional climate modeling revisited[J]. Journal of Geophysical Research-Atmospheres, 1999,104(6):6335-6352.

[12] 魏和林,符淙斌,王维强. 区域气候模式侧边界的处理对东亚夏季风降水模拟的影响[J]. 大气科学,1998,22(5):779-790.

[13] 刘鸿波,张大林,王斌. 区域气候模拟研究及其应用进展[J]. 气候与环境研究,2006,11(5):649-668.

[14] 高学杰,石英,Giorgi Filippo. 中国区域气候变化的一个高分辨率数值模拟[J]. 中国科学D辑:地球科学,2010,40(7):911-922.

[15] Hay L E, Wilby R L, Leavesley G H. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States[J]. Journal of the American Water Resources Association, 2000,36(2):387-397.

[16] Gellens D, Roulin E. Streamflow response of Belgian catchments to IPCC climate change scenarios[J]. Journal of Hydrology, 1998,210(1-4):242-258.

[17] Moreno J I L, Latron J, Lehmann A. Effects of sample and grid size on the accuracy and stability of regression-based snow interpolation methods[J]. Hydrological Processes, 2010,24(14):1914-1928.

[18] Gosciewski D. Application of selected statistical coefficients to accuracy analysis on surface interpolation models . 7th International Conference Environmental Engineering, 2008,1-3:1314-1319.

[19] Wang C, Tang G A, Jia D X, et al. Accuracy of difference associated with grid digital elevation model[J]. Proceedings of the SPIE — The International Society for Optical Engineering, 2007,67532I:13.

[20] Alsamamra H, Ruiz-Arias J A, Pozo-Vazquez D, et al. A comparative study of ordinary and residual kriging techniques for mapping global solar radiation over southern Spain[J]. Agricultural and Forest Meteorology, 2009,149(8):1343-1357.

[21] Garbrecht J, Martz L W. Digital elevation model grid size, landscape representation, and hydrologic simulations — Comment[J]. Water Resources Research, 1996,32(5):1461-1462.

[22] Fisher P. Improved modeling of elevation error with geostatistics[J]. Geoinformatica, 1998,2(3):215-233.

[23] Gribov A, Krivoruchko K. Geostatistical mapping with continuous moving neighborhood[J]. Mathematical Geology, 2004,36(2):267-281.

[24] 岳天祥,杜正平. 高精度曲面建模与经典模型的误差比较分析[J].自然科学进展,2006,16(8):986-991.

[25] Yue T X, Du Z P, Song D J, et al. A new method of surface modeling and its application to DEM construction[J]. Geomorphology, 2007,91(1-2):161-172.

[26] Shi W J, Liu J Y, Du Z P, et al. Surface modelling of soil properties based on land use information[J]. Geoderma, 2011, 162(3-4): 347-357.

[27] 范泽孟,岳天祥,陈传法,等.中国气温未来情景的降尺度模拟[J].地理研究,2011,30(11):2043-2051.

[28] 范泽孟,岳天祥,陈传法,等.中国气温与降水的时空变化趋势分析[J].地球信息科学学报,2011,13(4):526-533.

[29] 范泽孟,岳天祥,陈传法,等.中国降水未来情景的降尺度模拟[J].地理研究,2011,30(11):2043-2051.

[30] Matheron G. The theory of regionalized variables and its applications[M]. école national supérieure des mines, 1971.

[31] Box G E P, Cox D R. An analysis of transformations[J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 1964,26(2):211-252.

[32] Fotheringham S, Brunsdon C, Charlton M. Geographically weighted regression: the analysis of spatially varying relationships[M]. Wiley, 2002.

[33] 岳天祥,杜正平,宋敦江. 高精度曲面建模:HASM4[J].中国图象图形学报,2007,12(2):343-348.

[34] Budiman M, Mcbratney A B. Spatial prediction of soil properties using EBLUP with the Matérn covariance function[J]. Geoderma, 2007,140(4):324-336.

[35] Kitanidis P. Generalized covariance functions in estimation[J]. Mathematical Geology, 1993,25(5):525-540.

[36] Yue T X. Surface modeling: High accuracy and high speed methods[M]. Taylor & Francis, 2011.

[37] Brunsdon C, Fotheringham S, Charlton M. Geographically weighted regression: A method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996,28(4):281-298.

[38] Yu G N, Di L P, Yang W L. Downscaling of global soil moisture using auxiliary data . 2008 IEEE International Geoscience and Remote Sensing Symposium - Proceedings, July 6, 2008 - July 11, 2008, Boston, MA, United states: Institute of Electrical and Electronics Engineers Inc., 2008,III230-III233.

[39] Brunsdon C, Fotheringham S, Charlton M. Geographically weighted regression - modelling spatial non-stationarity[J]. Journal of the Royal Statistical Society Series D-the Statistician, 1998,47(3):431-443.

[40] 覃文忠. 地理加权回归基本理论与应用研究 . 同济大学,2007.

[41] 徐影,丁一汇,赵宗慈. 近30年人类活动对东亚地区气候变化影响的检测与评估[J].应用气象学报,2002,13(5):513-525.

[42] 施小英,徐祥德,徐影. 中国600个站气温和IPCC模式产品气温的比较[J]. 气象, 2005,31(7):49-53.

[43] 雷志栋. 土壤水动力学 [M]. 北京: 清华大学出版社, 1988.

[44] Goodchild M F. Spatial autocorrelation[M]. Norwich, England: Geo Books, 1986.