ARTICLES

Spatio-temporal Variation Characteristics of Surface Net Radiation in China over the Past 50 Years

Expand
  • 1. College of Population, Resource and Environment, Shandong Normal University, Jinan 250014, China;
    2. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2012-10-15

  Revised date: 2012-11-22

  Online published: 2013-02-25

Abstract

Surface net radiation is the sum of incident downward and upward shortwave and longwave radiation. Changes of surface net radiation control the Earth's climate, the hydrological cycle, and plant productivity. In this paper we focused on the spatio-temporal variation analysis of surface net radiation over China at site-scale. We estimated the parameters of the FAO Penman model using daily surface net radiation of 53 radiation sites during1993-2010 over China, and then we calculated mean annual/seasonal surface net radiation data in 699 weather sites from 1961-2010, based on the model and long-term measurement data of these stations. Furthermore, we analyzed the spatio-temporal variation characteristics of mean annual/seasonal surface net radiation of 699 sites in China in recent 50 years, by means of Mann-Kendall trend analysis method and GIS spatial analysis technique. We concluded that: 1) Parameterization of the FAO Penman model shows that the model has a relatively high simulation accuracy with RMSE 27.9W/m2, the coefficient of correlation 0.85, and the mean relative error 13%; 2) Mean annual/seasonal surface net radiation over China declines visibly with a fluctuant process with the changing rate reaching 0.74 W/m2 every 10 years. The amplitudes of changes vary with the seasons with the maximum downtrend (1.93 W/m2 every 10 years) in summer; 3) The analysis at each site shows that mean annual surface net radiation declines significantly (α=0.05) in most sites (59.8%). The changing trend of the eastern part is more obvious than that in the western part and summer plays the most important role in the interannual variability of surface net radiation. Northern China, Central China and Southern China are decreasing regions in spring, summer and autumn, while the Qinghai-Tibet Plateau turns to be a noticeable decreasing zone in winter. We speculated the much heavier aerosol loading in eastern part of China should be the primary cause for the decrease in surface net radiation and the volcano aerosols contribute to the oscillation in the trend. The increasing trend of snow on the Qinghai-Tibet Plateau should account for the decreasing trend of surface net radiation in winter. The quantitative spatio-temporal analysis of surface net radiation will be vital for the climate change and terrestrial ecosystem evapotranspiration research.

Cite this article

GAO Yang-Zi, HE Hong-Lin, ZHANG Li, LU Qian-Qian, XU Gui-Rui, ZHANG Jie-Liu . Spatio-temporal Variation Characteristics of Surface Net Radiation in China over the Past 50 Years[J]. Journal of Geo-information Science, 2013 , 15(1) : 1 -10 . DOI: 10.3724/SP.J.1047.2013.00001

References

[1] Alados I, Foyo-Moreno I, Olmo F J, et al. Relationship between net radiation and solar radiation for semi-arid shrub-land [J]. Agricultural and Forest Meteorology, 2003, 116(3-4): 221-227.

[2] Wang K C, Liang S L. An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature, and soil moisture [J]. Journal of Hydrometeorology, 2008, 9(4): 712-727.

[3] Llasat M C, Snyder R L. Data error effects on net radiation and evapotranspiration estimation [J]. Agricultural and Forest Meteorology, 1998, 91(3-4): 209-221.

[4] 王可丽.青藏高原地区云对地表净辐射的影响[J].高原气象, 1996, 15(3): 269-275.

[5] 刘允芬,李家永.亚热带红壤丘陵区水稻田净全辐射初探[J].中国生态农业学报, 2000, 8(1): 5-9.

[6] Jimenez-Munoz J C, Sobrino J A, Mattar C. Recent trends in solar exergy and net radiation at global scale [J]. Ecological Modelling, 2012, 228(1):59-65.

[7] 翁笃鸣,高建芸. 青藏高原地表净辐射的气候学研究[J]. 南京气象学院学报, 1993, 16(4): 464-470.

[8] 王可丽,钟强. 青藏高原地区大气顶净辐射与地表净辐射的关系[J]. 气象学报, 1995, 53(1): 101-107.

[9] 刘新安,于贵瑞,何洪林,等. 中国地表净辐射推算方法的研究[J]. 自然资源学报, 2006, 21(1): 139-145.

[10] 任鸿瑞,罗毅,谢贤群. 几种常用净辐射计算方法在黄淮海平原应用的评价[J]. 农业工程学报, 2006, 22(5): 140-146.

[11] 杜建飞,陈渭民,吴鹏飞,等. 由GMS资料估算我国东部地区夏季地表净辐射[J]. 南京气象学院学报, 2004, 27(5): 674-680.

[12] 马耀明,王介民. 黑河实验区地表净辐射区域分布及季节变化[J]. 大气科学, 1997, 21(6): 743-749.

[13] 叶晶,刘辉志,李万彪,等. 利用MODIS数据直接估算晴空区干旱与半干旱地表净辐射通量[J]. 北京大学学报(自然科学版), 2010, 46(6): 40-49.

[14] 张杰,杨兴国,杨启国,等. 利用MODIS资料估算西北雨养农业区地表净辐射[J]. 干旱气象, 2004, 22(2): 32-37.

[15] 翁笃鸣,孙治安,史兵. 中国地表净辐射的气候学研究[J]. 南京气象学院学报, 1988, 11(2): 132-142.

[16] Feng S, Hu S Q, Qian W H. Qualitycontrol of daily meteorological data in China, 1951-2000: a new dataset[J]. International Journal of Climatology, 2004, 24(7):853-870.

[17] Bisht G, Bras R L. Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study [J]. Remote Sensing of Environment, 2010, 114(7): 1522-1534.

[18] Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration [M]. FAO Irrigation and Drainage Paper 24, Rome, 1998,

[19] 康绍忠,刘晓明,熊运章. 土壤-植物-大气连续体水分传输理论及其应用[M]. 北京: 水利电力出版社, 1994.

[20] 李临颖. 冬小麦农田日蒸散量的计算[J]. 应用气象学报, 1992, 3(2): 248-253.

[21] 裴步祥. 蒸发和蒸散的测定与研究[M]. 北京: 气象出版社, 1989.

[22] 王菱,陈沈斌,侯光良. 利用彭曼公式计算潜在蒸发的高度订正方法[J]. 气象学报, 1998, 46(3): 381-383.

[23] 张懿. 干旱地区蒸发力计算的讨论[J]. 中国农业气象, 1991, 12(1): 22-25.

[24] Frére M, Popov G F. Agrometeorological crop monitoring and forecasting [M]. FAO Plant Production and Protection Paper 17, Rome,1979.

[25] 童成立,张文菊,汤阳,等. 逐日太阳辐射的模拟计算[J]. 中国农业气象, 2005, 26(3): 165-169.

[26] 任国玉,郭军,徐铭志. 近50年中国地面气候变化基本特征[J]. 气象学报, 2005, 63(6): 942-956.

[27] 魏凤英. 现代气候统计诊断与预测技术(2版)[M]. 北京:气象出版社, 2007.

[28] 赵济,陈传康. 中国地理[M]. 北京: 高等教育出版社, 1999.

[29] Yu P S, Yang T C, Wu C K. Impact of climate change on water resources in southern Taiwan [J]. Journal of Hydrology, 2002, 260(1-4): 161-175.

[30] 毛飞,张光智,徐祥德. 参考作物蒸散量的多种计算方法及其结果的比较[J]. 应用气象学报, 2000, 11(增刊1): 128-136.

[31] 王介民,高峰. 关于地表反照率遥感反演的几个问题[J]. 遥感技术与应用, 2004, 19(5): 295-300.

[32] Lean J. The sun's variable radiation and it's relevance to the earth [J]. Annual Review of Astronomy and Astrophysics, 1997, 35(1):33-67.

[33] Wild M. Enlightening global dimming and brightening [J]. Bulletin of the American Meteorological Society, 2012, 93(1): 27-37.

[34] Stanhill G, Cohen S. Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences [J]. Agricultural and Forest Meteorology, 2001, 107(4): 255-278.

[35] Liepert B, Tegen I. Multidecadal solar radiation trends in the United States and Germany and direct tropospheric aerosol forcing [J]. Journal of Geophysical Research-Atmospheres, 2002, 107(D12):4153-4167.

[36] Liang F, Xia X A.. Long-term trends in solar radiation and the associated climatic factors over China for 1961-2000 [J]. Annales Geophysicae, 2005, 23(7): 2425-2432.

[37] Luo Y F, Lu D R, Zhou X J, et al. Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years [J]. Journal of Geophysical Research-Atmospheres, 2001, 106(D13): 14501-14513.

[38] 周秀骥,李维亮,罗云峰. 中国地区大气气溶胶辐射强迫及区域气候效应的数值模拟[J]. 大气科学, 1998, 22(4): 418-427.

[39] 翁笃鸣. 青藏高原地表净辐射若干重要特征研究[J]. 南京气象学院学报, 1991, 14(2): 151-159.

[40] 李培基. 青藏高原积雪对全球变暖的响应[J]. 地理学报, 1996, 51(3): 260-265.

Outlines

/