Nonlinear Least Squares Phase Unwrapping Based on Topographic Slopes

  • 1. Geomatics College, Shandong University of Science and Technology, Qingdao 266510, China;
    2. Modern Educational Center, Shandong University of Science and Technology, Qingdao 266510, China

Received date: 2012-08-13

  Revised date: 2012-12-20

  Online published: 2013-02-25


Interferometric synthetic aperture radar (InSAR) phase unwrapping is one of the key technologies, which, uses the InSAR interference phase, to extract digital elevation model or accurate differential interferometry. However, affected by the porblem that the terrain is streep or the slope is larger, the unwrapping result is bad and causes error transmission in the differential wrapped phase information. In view of this problem, this paper considered to express the terrain slope in the interferogram as the partial phase frequency in range and azimuth direction. Using partial phase frequency to estimate the terrain slope and derivate the wrapped phase gradient probability density function (PG-PDF), the parameter model was used as the constraints of the nonlinear least squares phase unwrapping algorithm, in order to smooth the un-requirements unwrapped phase gradient. After unwrapping, the iterative solution which obtained from the results could eliminate the noise while reducing topographical factors under the condition of less sampling, at the same time the phase unwrapping results improved the accuracy of phase unwrapping. Finally, in the experiments that used the interferometric data obtained from ESA ENVISAT ASAR, it is verified that taking into account the terrain in the frequency domain method could effectively overcome the shortcomings of LS estimates for the phase gradient owed, and the algorithm in unwrapping could effectively give consideration to terrain factors, suppress error propagation, and have precision and adaptability to the terrain slope better than a direct weighted phase unwrapping algorithm.

Cite this article

LIU Wei-Ke, LIU Guo-Lin, FU Zheng-Qiang . Nonlinear Least Squares Phase Unwrapping Based on Topographic Slopes[J]. Journal of Geo-information Science, 2013 , 15(1) : 137 -143 . DOI: 10.3724/SP.J.1047.2013.00137


[1] 刘国林,郝华东,闫满,等.顾及地形因素的InSAR卡尔曼滤波相位解缠算法[J].测绘学报,2011,40(3):283-288.

[2] 熊涛,陈亦伦,杨健,等.基于变相位技术的相位解缠方法[J].中国科学:信息科学,2010,40(3):445-457.

[3] Hubig M, Suchandt S, Adam N. A class of solution-invariant transformations of cost functions for minimum cost flow phase unwrapping[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2004,21(10):1975-1987.

[4] 靳国旺,徐国华,佘懋勋,等.基于瞬时频率估计的InSAR相位解缠方法[J].测绘科学与技术学报,2009,26(1):33-35.

[5] 刘国林,独知行,薛怀平,等.卡尔曼滤波在InSAR噪声消除与相位解缠中的应用[J].大地测量与地球动力学,2006,26(2): 66-70.

[6] 赵争,张继贤,张过.遗传算法在InSAR相位解缠中的应用[J].测绘科学,2002,27(3):37-39.

[7] 魏志强,金亚秋.基于蚁群算法的InSAR相位解缠算法[J].电子与信息学报,2008,30(3):50-55.

[8] Krämer R. Auf Kalman-Filtern basierende Phasen- und Parameter estimation zur Lösung der Phasenvieldeutigkeitsproblematik bei der Höhenmodellerstellung aus SAR-Interferogrammen [D]. Siegen, Germany: Universität- GH Siegen, 1989.

[9] 朱岱寅,朱兆达.利用线性相位模型提高干涉SAR相干性及改进相干性估计[J].电子学报,2005,33(9):1594-1598.

[10] 向茂生,李树楷.地形坡度对干涉相位残余点发布的影响[J].测绘学报,1999,28(2):139-143.

[11] 刘学军,卞路,卢华兴,等.顾及DEM误差自相关的坡度计算模型精度分析[J].测绘学报,2008,37(2):200-206.

[12] Guarnieri A M. SAR Interferometry and Statistical Topography[J]. IEEE Trans. Geosci. Remote Sens, 2002, 40(12):2567-2581.

[13] Stramaglia S, Refice A, Guerriero L. Statistical mechanics approach to the phase unwrapping problem [J]. Physica, 2000, A(276):521-534.

[14] Guarnieri A M. Using topography statistics to help phase unwrapping[J]. IEEE Proc.-Radar Sonar Navig, 2003,150(3):144-151.

[15] 吴江飞. 星载GPS卫星定轨中若干问题的研究. 北京:中国科学院研究生院,2006.

[16] Lee J S, Hoppel K W, Mango S A, et al. Intensity and phase statistics of multilook-polarimetric and interferometric SAR imagery[J]. IEEE Trans.Geosci. Remote Sens,1994(32):1017-1028.

[17] Ghiglia D C, Pritt M D. Two-dimensional phase unwrapping: Theory, algorithms and software[M]. John Wiley & Sons,1998.

[18] Gruber A, Huber M, Wessel B, et al. Accuracy assessment of first calibrated Tan DEM-X DEM [C]. IGARSS'11, 2011, 114-117.

[19] 刘国林,郝华东,陶秋香.卡尔曼滤波相位解缠及其与其他方法的对比分析[J].武汉大学学报·信息科学版,2010,35(10):1174-1178.