ARTICLES

Classification Method of Muddy Tidal Flat Wetlands Based on Remote Sensing

Expand
  • Geographical Science Institute, Nanjing Normal University, Nanjing 210023, China

Received date: 2012-11-19

  Revised date: 2013-01-14

  Online published: 2013-08-08

Abstract

Remote sensing technology is a kind of effective technical means to obtain information of the tidal muddy flat wetlands. It has important significance to explore the tidal flat wetland's remote sensing classification method. This study's aim is to get high-precision information of features of tidal flat wetlands according to image feature and muddy tidal flat wetlands characteristics of Yancheng National Nature Reserve in Jiangsu Province, China. The TM image of 2010 is taken as the data source. The practical problems are tidal flat wetland vegetation types' complexity and the difficulty in correctly identifying the ecotone information. Because tidal flat wetland surface features in remote sensing images have a complex spectrum, it is very difficult to effectively extract information through one single method. So, we comprehensively use methods of the NDVI, band reflectance spectral characteristics, environmental characteristics and ecological conditions, one level after another to simplify the complex tidal flat wetland classification. Firstly, we chose the best combination of the bands. Secondly, we established vegetation and non-vegetation's ROI to analyze the band reflectance spectral characteristics. The ROI include 1316 Spartina alterniflora Loisel, 633 mudflats, 1253 Suaeda salsa, 1002 Phragmites cammunis, 525 water body, and 4803 road samples. At last, we established decision tree to reality the practices. After selecting 3216 samples to accuracy inspection and compared with the same area of supervised classification, the results show that classification accuracy is up to 95.87% by ROI training area. It has advantages in identifying the ecotones' vegetation types and vegetation scattered patches. The method makes up for the lack of a single classification and has an important reference value and practical significance in effectively extracting tidal flat surface features.

Cite this article

WANG Cong, LIU Gong-Yu, HOU Meng-Hang, TAN Qing-Mei . Classification Method of Muddy Tidal Flat Wetlands Based on Remote Sensing[J]. Journal of Geo-information Science, 2013 , 15(4) : 590 -596 . DOI: 10.3724/SP.J.1047.2013.00590

References

[1] 杨永兴.国际湿地科学研究进展和中国湿地科学研究优先领域与展望[J].地球科学进展,2002,17(4):508-514.

[2] Ramsey E W III, Chappell D K, Baldwin D G. AVHRR imagery used to identify hurricane damage in a forested wetland of Louisiana[J]. Photogram Metric Engineering and Remote Sensing, 1997(63):293-297.

[3] Shalaby A, Tateishi R. Remote sensing and GIS for mapping and monitoring land-cover and land-use changes in the northwestern coastal zone of Egypt[J]. Applied Geography, 2007(27):28-41.

[4] 牛明香,赵庚星.南四湖区湿地信息遥感提取技术研究[J].国土与自然资源研究,2004(1):51-53.

[5] 申文明,王文杰,罗海江,等.基于决策树分类技术的遥感影像分类方法研究[J].遥感技术与应用,2007,22(3):333-338.

[6] 左平,刘长安,赵书河,等.米草属植物在中国海岸带的分布现状[J].海洋科学,2009,31(5):101-110.

[7] Na X D, Zhang S Q, Zhang H Q. Integrating TM and ancillary geographical data with classification trees for land cover classification of marsh area[J]. Chinese Geographical Science, 2009,19(2):177-185.

[8] 赵萍,傅云飞,郑刘根,等.基于分类回归树分析的遥感影像土地利用/覆盖分类研究[J].遥感学报,2005,9(6):708-716.

[9] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,1995.

[10] 刘红玉.湿地景观变化与环境效应[M].北京:科学出版社,2005.

[11] 冯志轩,罗贤,高抒.江苏盐城自然保护区核心区环境动态的遥感分析[J].海洋通报,2007,26(6):68-73.

[12] 伍蓝. 基于ALOS等数据的盐城湿地植被分类及土地覆盖时空变化研究[D].南京:南京师范大学,2008.

[13] 黄华梅,张利权,袁琳.崇明东滩自然保护区盐沼植被的时空动态[J].生态学报,2007,27(10): 4167-4172.

[14] 刘红玉,张世奎,吕宪国.三江平原是地景观结构的时空变化[J].地理学报,2004,59(3):391-400.

[15] 宋晓宇,王纪华,刘良云,等.基于高光谱遥感影像的大气纠正:用AVIRIS数据评价大气纠正模型FLAASH[J].遥感技术与应用,2005,20(4):393-398.

[16] 慈慧,张行南,阮仁宗.基于ETM+遥感数据的滨海湿地信息提取研究[J].计算机工程与应用,2008,44(21):109-112.

Outlines

/