Appllication Analysis of the Improved HASM-AD in the Spatial Variable Simulation

  • 1. State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2013-04-02

  Revised date: 2013-04-18

  Online published: 2013-09-29


As a new surface modeling method, the HASM model can improve the spatial surface simulation significantly. However, the slow solution speed limited the wider application, at the same time, there is little analysis about how to select proper HASM algorithm for practical application because so many HASM algorithms were put forward in the past years. In order to improve the HASM model on speed, in this paper we improved the HASM-AD algorithms. Firstly, index information of sample points were added into the solution process, which could improve the solution speed greatly. At the same time, the computation of the first fundamental coefficients, the second fundamental coefficients and the Christoffel symbols of the second kind were moved to the calculation process of the independent units, which could decrease the memory demand. Mathematical test show that the improved HASM-AD indeed andvance the speed and meanwhile save the EMS memory. At last, in order to test the accuracy and speed advantage of the improved HASM-AD, the improved HASM-AD was applied into the rainfall distribution simulation of the China. The simulation result shows that the improved HASM-AD not only improves the simulation accuracy, but also improves the speed signicantly. For example, the HASM-PCG, another HASM algorithm used widely for its highe solution speed and accuracy, takes 1920 second, while the improved HASM-AD only takes 4 second and meanwhile abtain a better simulation result. So the HASM-AD indeed advance the solution speed greatly and it is proper to applied this algorithm into the large scale simulation of spatial variable.

Cite this article

DIAO Meng-Wei, YUE Tian-Xiang, DIAO Na . Appllication Analysis of the Improved HASM-AD in the Spatial Variable Simulation[J]. Journal of Geo-information Science, 2013 , 15(5) : 655 -661 . DOI: 10.3724/SP.J.1047.2013.00655


[1] 岳天祥,艾南山.冰斗形态的数学模型[J].冰川冻土,1990, 12(3):227-234.

[2] 岳天祥,杜正平,刘纪远.高精度曲面建模与误差分析[J]. 自然科学进展,2004,14(2):83-89.

[3] 岳天祥,杜正平.高精度曲面建模:新一代GIS与CAD的核心模块[J].自然科学进展,2005,15(3):73-82.

[4] 岳天祥,杜正平,宋敦江.高精度曲面建模:HASM4[J].中国图象图形学报,2007,12(2):343-348.

[5] Yue T X, Du Z P, Song D J, et al. A new method of surface modeling and its application to DEM construction[J]. Geomorphology, 2007,91(1-2):161-172.

[6] 宋敦江,岳天祥,杜正平.一种由等高线构建DEM的新方法[J].武汉大学学报(信息科学版),2012,37(4):472-476.

[7] Shi W J, Liu J Y, Song Y J, et al. Surface modelling of soil pH[J]. Geoderma, 2009,150(1-2):113-119.

[8] Shi W J, Liu J Y, Du Z P, et al. Surface modeling of soil properties based on land use information [J]. Geoderma, 2011, 162(3-4): 347-357.

[9] Shi W J, Liu J Y, Du Z P, et al. Development of a surface modeling method for mapping soil properties[J]. Journal of Geographical Sciences, 2012,22(4):752-760.

[10] 史文娇,岳天祥,石晓丽.土壤连续属性空间插值方法及其精度的研究进展[J].自然资源学报,2012,27(1):163-175.

[11] 王晨亮,岳天祥,范泽孟,等.基于高精度曲面建模的中国气候降尺度模型[J]. 地球信息科学学报,2012,14(5): 599-610.

[12] 赵娜,岳天祥.高精度曲面建模的一种快速算法[J].地球信息科学学报,2012,14(3):281-285.

[13] 宋印军,岳天祥.基于多重网格法求解的高精度曲面建模模型[J].武汉大学学报(信息科学版),2009,34(6):711- 714.

[14] 史文娇,杜正平,宋印军.基于多重网格的土壤PH高精度曲面建模研究[J].地理研究,2011,30(5):861-870.

[15] Yue T X, Wang S H. Adjustment computation of HASM: a high-accuracy and high-speed method[J]. International Journal of Geographical Information Science, 2010,24 (11):1725-1743.

[16] Yue T X, Chen C F, Li B L. An adaptive method of high accuracy surface modeling and its application to simulating elevation surfaces[J]. Transactions in GIS, 2010,14(5): 615-630.

[17] 闫长青,岳天祥.基于GPU的HASM动态模拟与实时渲染方法[J].地球信息科学学报,2012,14(2):149-157.

[18] 张宝琳,谷同祥,莫则尧.数值并行计算原理与方法[M]. 北京:国防工业出版社,1999.

[19] 王世海.高精度曲面建模方法HASM-AD的研究[D].北京:中国科学院地理科学与资源研究所,2011.

[20] Bannayan M, Sanjani S. Weather conditions associated with irrigated crops in an arid and semi arid environment [J]. Agriculture and Forest Meteorology, 2011,151(12): 1589-1598.

[21] Cai X M, Wang D B, Romain L. Impact of climate change on crop yield: A case study of Rainfed corn in central Illinois[J]. Journal of Applied Meteorology and Climatology, 2009,48(9):1868-1881.

[22] Yan H, Nix H A, Hutchinson M F, et al. Spatial interpolation of monthly mean climate for China [J]. Internatioal Journal of Climatology, 2005,25(10):1369-1379.

[23] 张赛,廖顺宝.多年平均气温空间化BP神经网络模型的模拟分析[J].地球信息科学学报,2011,13(4):534-538.

[24] Marquinez J, Lastra J, Garcia P. Estimation models for precipitation in mountains regions: The use of GIS and multivariate analysis[J]. Journal of Hydrology, 2003,270 (1-2):1-11.

[25] 赵娜,岳天祥,王晨亮.1951-2010 年中国季平均降水高精度曲面建模分析[J].地理科学进展,2013,32(1):49-58.