The Opportunities, Challenges and Strategies of Resources and Environment Science Database Construction of China’s Surrounding Areas

  • 1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2013-12-01

  Revised date: 2014-01-01

  Online published: 2014-01-05


The database construction of resources and environment science of China's surrounding countries is the basic task for resource environment problem research and macro decision-making. The level of database construction of resources and environment science of surrounding areas is lower than that of developed countries because of China's complex geopolitical relationship with other countries. However, the Ministry of Science and Technology, China Academy of Sciences, the National Development Bank and the various ministries have launched resources and environment science database construction work at global, continental or national scale in the past 2-3 years. The national strategy of promoting economic zone of Silk Road and the Maritime Silk Road Construction puts forward higher, more urgent request to the database construction of resources and environment science of surrounding areas. This paper firstly provided an overview of the significant requirement of government and scientific research, summarized the most recent developments and ideas in large scale scientific datasets and platforms formed by USA, European Union, and international organizations. Then, the recent progress of the construction of resources and environmental scientific datasets were comprehensive reviewed and the problems existed were discussed. Finally, the general strategies for establishing resources and environmental database were introduced, including metadata standards design, data quality control, dynamic updating approaches, etc. For the basis and demand of our country, the content of surrounding countries' resources and environment science database should highlight geopolitical issues and macroeconomic policy-making researches, and we should construct a database covering both natural sciences and humanities at multi-scales. On the information processing and service mode, we should use advanced and mature space information technology to enhance the services of the data comprehensively.

Cite this article

JIANG Dong, HAO Mengmeng, ZHUANG Dafang, HUANG Yaohuan . The Opportunities, Challenges and Strategies of Resources and Environment Science Database Construction of China’s Surrounding Areas[J]. Journal of Geo-information Science, 2014 , 16(1) : 54 -60 . DOI: 10.3724/SP.J.1047.2014.00054


[1] 陆大道.中国地理学的发展与全球变化研究[J].地理学报, 2011, 66(2):147-156.

[2] 孙九林.科学数据资源与共享[J].中国基础科学, 2003(1):30-33.

[3] SEDAC (the Socioeconomic Data and Applications Center). 2013.

[4] China Data Center (CDC). 2013.12. (

[5] National Science Foundation. Long-lived digital data collections: Enabling research and education in 21st century[R]. National Science Foundation, September, 2005.

[6] Dataone. What is dataone?.2013.12.(

[7] 王卷乐, 孙九林.世界数据中心(WDC)回顾、变革与展望[J].地球科学进展, 2009, 24(6):612-620.

[8] Thanos C. A vision for global research data infrastructures[J]. Data Science Journal, 2013(12):71-90.

[9] 陈述彭, 邵宇宾.全球变化研究与地理信息系统[J].地理学报, 1996, 51(增刊):15-25.

[10] 葛全胜, 何凡能, 郑景云, 等.21世纪中国历史地理学发展的思考[J].地理研究, 2005, 23(3):374-383.

[11] Ma T, Zhou C H. Climate-associated changes in spring plant phenology in China[J]. International Journal of Biometeorology, 2012, 56(2):269-275.

[12] 诸云强, 孙九林, 廖顺宝, 等.地球系统科学数据共享研究与实践[J].地球信息科学学报, 2010, 12(1):1-5.

[13] 江东, 黄耀欢, 庄大方.全球及中国周边地区资源环境科学数据库构建[J].地球信息科学学报, 2012, 14(5):592-598.

[14] IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation[R]. 2012.

[15] 宋长青, 冷疏影, 吕克解.地理学在全球变化研究中的学科地位及重要作用[J].地球科学进展, 2000, 15(3):318-320.

[16] 江东, 杨小唤, 王乃斌, 等.基于RS、GIS 的人口空间分布研究[J].地球科学进展, 2002, 17(5):734-738.

[17] 江东, 王建华, 杨小唤.空间信息技术支持下的人口数据空间化[J].水科学进展, 2003(增刊):94-98.

[18] 李军, 周成虎.地球空间数据元数据标准初探[J].地理科学进展, 1998, 17(4):55-63.

[19] 薛明.美国联邦地理数据委员会的标准参考模型[J].测绘标准化, 2004, 62(20):40-48.

[20] Metadata Ad Hoc Working Group, Federal Geographic Data Committee. Content standard for digital geospatial metadata[R]. Content Standards for Digital Geospatial Metadata (FGDC-STD-001-1998), 1998, 1.

[21] 杜新锋, 姜在炳.基于GIS 的煤矿地质测量信息分类编码技术[J].煤田地质与勘探, 2007, 35(2):20-22.

[22] 陈述彭, 鲁学军, 周成虎.地理信息系统导论[M].北京:科学出版社, 1999.

[23] 梅士员, 胡金林, 江南.空间数据共享中的数据质量问题[J].现代测绘, 2003, 26(4):6-8.

[24] 王卷乐, 陈沈斌.地学栅格格网数据质量评价指标与方法[J].测绘科学, 2006, 31(5):83-85.

[25] 刘大杰, 刘春.GIS数字产品质量抽样检验方案探讨[J].武汉测绘科技大学学报, 2000, 25(4):348.

[26] Huang Y H, Jiang D, Zhuang D F, et al. Filling gaps in Vegetation Index Measurements for Crop Growth Monitoring[J]. African Journal of Agricultural Research, 2011, 6(12):2920-2930.

[27] Gu J, Li X, Huang C L, et al. A simplified data assimilation method for reconstructing time-series MODIS NDVI data[J]. Advances in Space Research, 2009(44):501-509.

[28] Alavi N, Warland J S, Berg A A. Filling gaps in evapotranspiration measurements for water budget studies: Evaluation of a Kalman filtering approach[J]. Agricultural and Forest Meteorology, 2006(141):57-66.

[29] Fu J Y, Jiang D, Huang Y H, et al. A Kalman filter-based method for reconstructing GMS-5 global solar radiation by introduction of in situ data[J]. Energies, 2013(6):2804-2818.

[30] 陈新保, Li S N, 李黎, 等.基于对象-事件-过程的时空数据模型及其应用[J].地理与地理信息科学, 2013, 29(3):10-15.

[31] 孟令奎, 赵春宇, 林志勇, 等.基于地理事件时变序列的时空数据模型研究与实现[J].武汉大学学报(信息科学版), 2003, 28(2):202-206.

[32] 姜晓轶, 周云轩.从空间到时间-时空数据模型研究[J].吉林大学学报(地球科学版), 2006, 36(3):480-485.

[33] 胡辉, 王昌佐, 梁万杰, 等.基于Shapefile的基态修正模型设计与实现[J].地球信息科学学报, 2012, 14(3):313-319.