Journal of Geo-information Science >
Landscape Spatial Distribution Modeling Based on CLUE-S Model in the Liaohe Watershed
Received date: 2014-05-04
Request revised date: 2014-07-03
Online published: 2013-12-26
Copyright
In this paper, we took the Liaohe watershed as the study area and applied the CLUE-S model for the purpose of landscape pattern simulation, based on the land use data in 2000 and 2010. Eight key driving factors were selected in this study, which include elevation, DEM, slope, distance, soil and others. Firstly, the land use data in 2000 was used to simulate the spatial pattern of land use in 2010 for the Liaohe watershed. Based on the adjusted model parameters, the land use patterns of 2020 were then simulated respectively for the natural increase scenario, economic development scenario, and ecological protection scenario. The results showed that the simulation accuracy for 2010 reached a considerably 90.7%, implying that the CLUE-S model is well fitted for modeling the land use pattern in the Liaohe watershed. In different scenarios, it shows explicitly an increase in urban land and a decrease in cultivated land. Under the economic development scenario, we concluded that: the cultivated land conversion range is the largest; the forest reduction is relatively small; and the construction land surrounding the developing zones of the Liaohe River basin had gradually expanded, which mainly aggregated in Shenyang, Fushun, Anshan and other industrial developed cities. Under the ecological protection scenario, we discovered that the forests and wetlands that located at the mouth of the Liaohe River had gradually increased. This is due to the conversion of farmland into forest in the east region. The conclusions made in this study will provide data reference and basic information for the ecological protection in the Liaohe watershed, the land use planning management, and policy-making in future.
WANG Xin , LIU Weiling , ZHANG Li , ZHANG Linbo , ZHENG Jiaoqi . Landscape Spatial Distribution Modeling Based on CLUE-S Model in the Liaohe Watershed[J]. Journal of Geo-information Science, 2014 , 16(6) : 925 -932 . DOI: 10.3724/SP.J.1047.2014.00925
Fig. 1 Overview of the modeling procedure图1 CLUE-S 模型流程示意图 |
Fig. 2 Data support system of the CLUE-S model图2 CLUE-S模型的数据支撑体系 |
Tab. 1 The transferring matrix of area with respect to different landscape types from 2000 to 2010表1 2000-2010年景观转移矩阵(km2) |
森林 | 灌丛 | 草地 | 湿地 | 耕地 | 城镇 | 未利用土地 | 2010年合计 | |
---|---|---|---|---|---|---|---|---|
森林 | 19423.7 | 1.3 | 0 | 2.9 | 28 | 9 | 0.4 | 19465.3 |
灌丛 | 0.1 | 2461.8 | 0 | 0.2 | 1.9 | 1.1 | 0.1 | 2465.2 |
草地 | 0.1 | 1.4 | 577.5 | 0 | 0 | 0.1 | 0 | 579.1 |
湿地 | 1.5 | 0.1 | 2.3 | 2199.1 | 31.1 | 91.1 | 3.3 | 2328.5 |
耕地 | 23.5 | 1.2 | 39.2 | 100.4 | 34851.1 | 1038.9 | 19.8 | 36074.1 |
城镇 | 0.2 | 0.1 | 1 | 6.8 | 0.7 | 5127.5 | 0.6 | 5136.9 |
未利用土地 | 0.1 | 0 | 3 | 1.5 | 0.9 | 2.4 | 105.6 | 113.5 |
2000年合计 | 19449.2 | 2465.9 | 623 | 2310.9 | 34913.7 | 6270.1 | 129.8 | 66162.6 |
Tab. 2 Single land use dynamic degree表2 单一土地利用动态度 |
类型 | 单一土地利用转出率(%) | 单一土地利用转入率(%) | ||
---|---|---|---|---|
2000-2005(年) | 2005-2010(年) | 2000-2005(年) | 2005-2010(年) | |
林地 | 0.13 | 0.09 | 0.08 | 0.05 |
灌丛 | 0.08 | 0.06 | 0.08 | 0.09 |
草地 | 0.00 | 0.24 | 1.03 | 6.34 |
湿地 | 1.07 | 4.54 | 1.56 | 3.33 |
耕地 | 1.05 | 2.37 | 0.09 | 0.09 |
城镇 | 0.001 | 0.18 | 6.18 | 12.83 |
未利用土地 | 1.23 | 6.00 | 2.43 | 16.53 |
Tab.3 Beta values and exponent Beta values for logistic regression in CLUE-S model表3 CLUE-S模型各驱动因子回归系数 |
驱动因子 | 森林 | 灌丛 | 草地 | |||
---|---|---|---|---|---|---|
Beta系数 | Exp(β) | Beta系数 | Exp(β) | Beta系数 | Exp(β) | |
高程 | 0.00568401 | 1.005723 | 0.00445170 | 1.0044610 | 0.002295380 | 1.002298021 |
到城市居民点距离 | -0.00000631 | 0.999993 | -0.00002937 | 0.9999706 | 0.000021921 | 1.000021920 |
到县级居民点距离 | -0.00000132 | 0.999012 | -0.00000231 | 0.9995699 | 0.000012988 | 0.999999870 |
到河流距离 | -0.00001110 | 0.999980 | -0.00003374 | 0.9999662 | 0.000016914 | 1.000016914 |
到公路距离 | 0.00000546 | 1.000006 | 0.00000646 | 1.0000064 | -0.000012250 | 0.999987740 |
坡度 | 0.17217200 | 1.186375 | – | – | -0.086910760 | 0.916758897 |
土壤类型 | 0.00799600 | 1.009013 | – | – | -0.086910760 | 0.916758890 |
人口密度 | 0.00008890 | 0.999857 | 0.000549611 | 1.00038258 | – | – |
GDP | – | 1.000000 | -0.000081020 | 0.99999991 | -0.000000380 | 0.999999960 |
常量 | -2.37488 | 0.093025 | -3.307222400 | 0.036617741 | -4.169922 | 0.015453450 |
ROC | 0.847 | 0.797 | 0.705 | |||
驱动因子 | 湿地 | 耕地 | 建设用地 | |||
Beta系数 | Exp(β) | Beta系数 | Exp(β) | Beta系数 | Exp(β) | |
高程 | -0.0085759400 | 0.99146072 | -0.005299000 | 0.99471490 | -0.004737500 | 0.99527360 |
到城市居民点距离 | – | – | 0.000001815 | 1.00001810 | -0.000026000 | 0.99997396 |
到县级居民点距离 | – | – | 0.000256893 | 1.00098730 | -0.000010100 | 1.00000012 |
到河流距离 | 0.0000096300 | 1.00000963 | 0.000000305 | 0.99999690 | 0.000000686 | 1.00000600 |
到公路距离 | -0.0000003119 | 0.99999688 | 0.000000123 | 1.00000123 | -0.000011400 | 0.99998850 |
坡度 | 0.1115012000 | 1.11795518 | -0.151551000 | 0.85937300 | – | – |
土壤类型 | 0.1871957800 | 1.20586335 | -0.028856000 | 0.97155618 | 0.013248540 | 1.01333669 |
人口密度 | -0.0003068010 | 0.999693245 | -0.000614790 | 0.99938539 | 0.000067530 | 1.00067550 |
GDP | -0.0000088300 | 0.99999999 | 0.000002924 | 1.00000000 | 0.000008246 | 1.00000000 |
常量 | -4.4368890000 | 0.01183269 | 1.357303000 | 3.88569960 | -1.578751000 | 0.20623249 |
ROC | 0.727 | 0.770 | 0.766 |
注:“–”表示未通过显著性检验 |
Tab. 4 The results of Kappa coefficients表4 kappa系列指数精度验证 |
Kstandard | Klocation | Kno | Kquantity |
---|---|---|---|
0.907 | 0.934 | 0.909 | 0.971 |
Fig. 3 The simulation result of natural development in 2020图3 情景1的2020年模拟结果 |
Fig. 4 The simulation result of economical development in 2020图4 情景2的2020年模拟结果 |
Fig. 5 The simulation result of ecological development in 2020图5 情景3的2020年模拟结果 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
/
〈 | 〉 |