ARTICLES

The Relationship between Gully Erosion and Geomorphological Factors in the Hill and Ravine Region of the Loess Plateau

Expand
  • 1. State Key Laboratory of Resources and Environmental Information System (LREIS), Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 10010, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2013-05-15

  Revised date: 2013-06-27

  Online published: 2014-01-05

Abstract

Gully erosion is a result of the combined impact of various geomorphological factors. Taking the Zhifanggou small watershed in Ansai County as the study area, six geomorphological factors, such as land use, soil type, length-slope factor (LS), aspect, plan curvature, and topographical wetness index (TWI) have been selected to calculate weights of the various factors. For each factor, we made a thematic map and translated into a grid pattern. Then we calculated the proportion of each class of the factor in gully (DensClas) after reclassifying the factor through ArcGIS. And we calculated gully pixels and total pixels in the study area and gained the ratio value (DensMap), also, the weight (Wi) of factor proportion in gully (DensClas) and gully proportion in the entire study area (DensMap). We can calculate soil erosion susceptibility by the overlay analysis of Wi maps, then classify soil erosion susceptibility into five levels, i.e., very low, low, moderate, high, and very high, and evaluate gully erosion in this article. The results showed: gully erosion occurred easily in the areas which the slope steepness and length is large, and surface humidity is high. Furthermore, gully erosion occurred more easily in the concave of the back where the land use is grass and where covers yellow spongy soils. Considering gully erosion and soil erosion susceptibility, gully erosion occurred easily in areas where soil erosion susceptibility is above moderate, and the proportion up to 90%. High precision and less error shows that our method is universal, which the response accuracy of the weighs from the experimental area to gully erosion in the validation area is 82.43%, not differing very much from the practical value (90.53%). This study will provide a scientific basis to evaluate and control gully erosion, which have an important practical significance.

Cite this article

ZHANG Wenjie, CHENG Weiming, LI Baolin, ZHOU Chenghu, TONG Chiming . The Relationship between Gully Erosion and Geomorphological Factors in the Hill and Ravine Region of the Loess Plateau[J]. Journal of Geo-information Science, 2014 , 16(1) : 87 -94 . DOI: 10.3724/SP.J.1047.2014.00087

References

[1] 姚文艺, 汤立群.水力侵蚀产沙过程及模拟[M].郑州:黄河水利出版社, 2001.

[2] 刘元保, 唐克丽, 周佩华.黄土高原坡面沟蚀的类型及其发生发展规律[J].中国科学院西北水土保持研究所集刊, 1998(7):9-18.

[3] 景可.黄土高原沟谷侵蚀研究[J].地理科学, 1986, 6(4):340-347.

[4] 陈永宗.黄河中游黄土丘陵区的沟谷类型[J].地理科学, 1984, 4(4):321-327.

[5] 杨华.山西吉县黄土区切沟分类的研究[J].北京林业大学学报, 2001, 23(1):38-43.

[6] 李斌兵, 郑粉莉, 张鹏.黄土高原丘陵沟壑区小流域浅沟和切沟侵蚀区的界定[J].水土保持通报, 2008, 28(5):16-20.

[7] 刘秉正, 吴发起.黄土塬区沟谷侵蚀与发展[J].西北林学院学报, 1993, 8(2):7-15.

[8] 唐克丽, 张科利, 雷阿林.黄土丘陵区退耕上限坡度的研究论证[J].科学通报, 1998, 40(2):200-203.

[9] 蔡强国, 王可贵, 陈永宗.黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社, 1998.

[10] 陈永宗, 景可, 蔡强国.黄土高原现代侵蚀过程与治理[M].北京:科学出版社, 1998.

[11] 李秀霞, 倪晋仁.土壤侵蚀及其影响因素空间相关性分析[J].地理科学进展, 2003, 28(2):161-166.

[12] 汤国安, 杨昕等.ArcGIS地理信息系统空间分析实验教程(第二版)[M].北京:科学出版社, 2012.

[13] 游智敏, 伍永秋, 刘宝元.利用GPS进行切沟侵蚀监测研究[J].水土保持学报, 2004, 18(5):91-94.

[14] 胡刚, 伍永秋, 刘宝元, 等.GPS 和GIS 进行短期沟蚀研究初探:以东北漫岗黑土区为例[J].水土保持学报, 2004, 18(4):6-19.

[15] 何福红, 李勇, 张晴雯.基于GPS不同测量间距的DEM地形信息提取沟蚀参数对比[J].水土保持学报, 2006, 20(5):116-120.

[16] 庞国伟, 谢红霞, 李锐, 等.70多年来纸坊沟小流域土壤侵蚀演变过程[J].中国水土保持科学, 2012, 10(3):1-8.

[17] 李斌兵, 郑粉莉, 龙栋材, 等.基于GIS纸坊沟小流域土壤侵蚀强度空间分布[J].地理科学, 2009, 29(1):105-110.

[18] 孔亚平, 张科利, 杨红丽.土壤可蚀性模拟研究中的坡长选定问题[J].地理科学, 2005, 25(3):374-377.

[19] 张岩, 刘宝元, 史培军, 等.黄土高原土壤侵蚀作物覆盖因子计算[J].生态学报, 2001, 21(7):1050-1056.

[20] 王占礼, 邵明安, 刘文兆, 等.纸坊沟流域土壤侵蚀与产沙初步研究[J].天津师大学报:自然科学版, 1999, 19(1):45-50.

[21] 贾志伟, 江忠善.黄土高原中部地区土壤侵蚀人为影响因素的分析[J].水土保持通报, 1991, 11(1):28-33.

[22]  傅伯杰, 陈利顶, 马克明.黄土丘陵小流域土地利用变化对生态环境的影响——以延安市羊圈沟流域为例[J].地理学报, 1999, 54(3):241-247.

[23]  钟德燕.基于USLE模型的黄土丘陵沟壑区土壤侵蚀研究——以吴起县为例[D].杨凌:西北农林科技大学, 2012.

[24]  Wischmeier W H, Smith D D. Predicting rainfall erosion losses: a guide to conservation planning with universal soil loss equation (USLE). Agriculture Handbook 537[M]. Washington DC: USDA-ARS, 1978.

[25] McCool D K, Brown L C, Foster G R, et al. Revised slope steepness factor for the universal soil loss equation[J]. Transactions of the ASAE, 1987, 30(5):1387-1396.

[26]  Liu B Y, Nearing M A, Risse L M. Slope gradient effects on soil loss for steep slopes[J]. Transactions of the ASAE, 1994, 37(6):1835-1840.

[27]  周启鸣, 刘学军.数字地形分析[M].北京:科学出版社, 2006.

[28]  张彩霞.基于DEM的地形湿度指数提取与应用研究[D].杨凌:西北农林科技大学, 2006.

[29]  Beven K J. Runoff production and flood frequency in catchments of order: An alternative approach[C].//Gupta V K and Rodriguez-Iturbe I (eds.). Scale Problems in Hydrology. Dordrecht: Reidel, 1986:107-131.

[30]  Yin K L, Yan T Z. Statistical prediction model for slope instability of metamorphosed rocks[C]. Proceedings of the 5th International Symposium on Landslides. Lausanne, Switzerland, 1988:1269-1272.

[31]  黄河水利委员会勘测规划设计院.中国黄土高原地貌图集[M].北京:水利电力出版社, 1987.

[32]  Conforti M, Aucelli P P C, Robustelli G, et al. Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy)[J]. Natural Hazards, 2011, 56(3):881-89.

Outlines

/