GeoKSCloud:Motivation, Design and Application

  • 1. Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, Spatial Information Research Centre of Fujian, Fuzhou University, Fuzhou 350002, China;
    2. College of Computer Science and Mathematics, Fuzhou University, Fuzhou 35002, China

Received date: 2013-05-15

  Revised date: 2013-09-23

  Online published: 2014-03-10


Currently, it is one of the most challenging issues to discover and organize diverse distributed geospatial services for geosciences problem resolving, knowledge innovation and sharing. These services include geospatial data services, geospatial analysis services and geospatial data mining services, etc. Facing this challenge and considering the key points of geospatial information processing, knowledge discovery and sharing, in this paper, the concept of geospatial knowledge cloud is depicted, and a novel cloud-based geographical knowledge service platform named as GeoKSCloud is proposed. Based on cloud computing technology, GeoKSCloud tries to create a unified framework to aggregate a broad variety cross-node and cross-platform geospatial services for end-users. With aim to deal with the compute-intensive and data-intensive challenge of geospatial data processing, the platform adopts the idea of virtualization to construct a scalable computation environment. Five main components of data aggregation, service management, geosciences problem solving, platform control and portal are designed to provide functions of services registry, discovery, composition, execution and data integration. Moreover, supported by natural language understanding, ontology and data visualization technology, the platform offers intelligent reasoning and visualization tools to help users to perform problem solving task more efficiently. The key technologies associated with platform realization are discussed, which includes massive geospatial data cloud storage and management technology, knowledge service management and composition technology, and intelligent geospatial problem solving technology, et al. Finally, a use case of historical seismic influence field analysis is proposed to demonstrate the interoperation of platform components, and the representative user interfaces of platform are illustrated. The case study reveals that GeoKSCloud could reduce the complexity and overhead of geosciences problem solving by coordinating multiple distributed and heterogeneous services.

Cite this article

WU Xiaozhu, CHEN Chongcheng, LIN Jianfeng, WU Jianwei, LIN Jiaxiang, LEI Delong, CAI Zhiming . GeoKSCloud:Motivation, Design and Application[J]. Journal of Geo-information Science, 2014 , 16(2) : 273 -281 . DOI: 10.3724/SP.J.1047.2014.00273


[1] Goodchild M F. Challenges in geographical information science[C]. Proceedings of the Royal Society A, 467(2133),2011,2431-2443.

[2] Yang C W, Goodchild M, Huang Q Y, et al. Spatial cloud computing: How can the geospatial sciences use and help shape cloud computing[J]. International Journal of Digital Earth, 2011,4(4):305-329.

[3] De La Beaujardiere J. Web map service implementation specification[C]. Open GIS Consortium, 2002.

[4] Vretanos P. Web feature service implementation specification[C]. Open Geospatial Consortium Specification, 2005.

[5] Whiteside A, Evans J. Web coverage service (wcs) implementation specification[C]. Open Geospatial Consortium, 2006.

[6] Nebert D. Catalog services specification (Version 1.1. 1), OpenGIS© Implementation Specification[C]. OpenGIS Consortium, 2002.

[7] Brunclik T. Aggregating remote map services with local cascading WMS server[C]. Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, February, 2007,16-19.

[8] Weiser A, Zipf A. Web service orchestration of OGC web services for disaster management, Geomatics Solutions for Disaster Management[M]. Berlin Heidelberg: Springer, 2007,239-254.

[9] Cannataro M, Talia D. The knowledge grid[J]. Communications of the ACM, 2003,46(1):89-93.

[10] ?ur?in V, Ghanem M, Guo Y, et al. Discovery net: towards a grid of knowledge discovery[C]. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2002,658-663.

[11] Stevens R D, Robinson A J, Goble C A. MyGrid: Personalised bioinformatics on the information grid[J]. Bioinformatics, 2003(19):302-304.

[12] Brezany P, Hofer J, Tjoa A M, et al. Gridminer: An infrastructure for data mining on computational grids[C]. Proceedings of Australian Partnership for Advanced Computing Conference (APAC), 2003.

[13] Di L. GeoBrain-a web services based geospatial knowledge building system[C]. Proceedings of NASA Earth Science Technology Conference, 2004,22-24.

[14] Di L. A framework for developing web-service-based intelligent geospatial knowledge systems[J]. Geographic Information Sciences, 2005,11(1):24-28.

[15] Zhao P, Di L. Semantic web service based geospatial knowledge discovery[C]. Proceedings of 2006 IEEE International Geoscience and Remote Sensing Symposium, Denver, Colorado, USA, 2006.

[16] Yue P, Di L, Yang W, et al. Semantics-based automatic composition of geospatial web service chains[J]. Computers & Geosciences, 2007,33(5):649-665.

[17] Chen L, Xiujun M, Guanhua C, et al. A peer-to-peer architecture for dynamic executing GIS web service composition[C]. Geoscience and Remote Sensing Symposium, 2005 IGARSS'05. Proceedings, 2005, 979-982.

[18] 陈崇成,林剑峰,吴小竹,等.基于NoSQL的海量空间数据云存储与服务方法[J].地球信息科学学报,2013,15(2):166-174.

[19] Zhang C, De Sterck H. CloudBATCH: A batch job queuing system on clouds with Hadoop and HBase[C]. 2010 IEEE Second International Conference on Cloud Computing Technology and Science (CloudCom), IEEE, 2010, 368-375.

[20] Eifrem E. Neo4J-the benefits of graph databases[DB/OL]. 2009. /public/schedule/detail/8364.

[21] D'Ambrogio A. A model-driven wsdl extension for describing the qos of web services[C]. IEEE International Conference on Web Services (ICWS'06), .2006,789-796.

[22] Farrell J, Lausen H. Semantic annotations for WSDL[R]. W3C Working Draft, 2006.

[23] Dustdar S, Schreiner W. A survey on web services composition[J]. International Journal of Web and Grid Services, 2005,1(1):1-30.

[24] McDermott D, Ghallab M, Howe A, et al. PDDL-the planning domain definition language[R].,1998.

[25] 聂树明.基于GIS的地震影响场设计与应用[J].应用基础与工程科学学报,2008,16(4):546-556.