Journal of Geo-information Science >
Research on Spatial Characteristics of Regional Poverty Based on BP Neural Network: A Case Study of Wuling Mountain Area
Received date: 2014-04-23
Request revised date: 2014-08-15
Online published: 2015-01-05
Copyright
With the implementation of new regional development and poverty alleviation strategy, contiguous destitute region shave turned into the main battle field to promote poverty alleviation and development. Selecting the contiguous destitute regions in Wuling Mountain as the study area, taking county as the study unit, this paper selects the main influence factors of poverty from common natural and social factors to build an evaluation index system. Using GIS and BP Neural Network, this paper simulates natural impoverishing index and socio-economic poverty alleviation index, analyses the reason of regional poverty from the perspective of nature and society, and explores the spatial distribution characteristics of poverty in order to provide decision support for establishing policies for poverty alleviation and development, and achieving regional harmonious development. The results show that the natural factors, such as terrain, slope, and disaster, are the main impoverishing index for the study area. The socio-economic factors, such as education, road, and medical care, could alleviate poverty to some extent. The natural poverty degree for most counties in the study area is above average, in which the Tongren and Xiangxi regions have relatively high level of poverty. Most destitute areas have low socio-economic level, and their ability to alleviate poverty is not strong. The degree of poverty in Qianjiang and Zhangjiajie regions is lower, while in Tongren and Xiangxi regions is higher. Large differences exist between these counties’ poverty situations. Guzhang, Longchuan, Wuichuan, Zhengan, Longhui, Xinhua, Daotong, and Chengbu together constitute the poverty distribution pattern of "large dispersion, small aggregation" in Wuling Mountain area. In the process of poverty alleviation and development, considerations should be given to the natural factors, and take advantage of local nature resources, especially the mining resources. According to the poverty type and self-development ability, different regions are compatible with different approaches. Meanwhile, the contiguous destitute regions in Wuling Mountain area should interactively strengthen their exchange and cooperation.
LIU Yiming , HU Zhuowei , ZHAO Wenji , WANG Zhiheng . Research on Spatial Characteristics of Regional Poverty Based on BP Neural Network: A Case Study of Wuling Mountain Area[J]. Journal of Geo-information Science, 2015 , 17(1) : 69 -77 . DOI: 10.3724/SP.J.1047.2015.00069
Fig. 1 Location and administrative divisions of study area图1 研究区地理位置与行政区划 |
Tab. 1 Data and data sources表1 数据及来源 |
名称 | 来源 |
---|---|
行政边界矢量数据 | 研究区扶贫办 |
90 m空间分辨率DEM数据 | 地球系统科学数据共享平台 |
综合灾情指数(SDI) | 民政部国家减灾中心提供,并通过公式计算得到 |
初级净生产力(NPP) | 利用中国气象局监测数据计算得到 |
NDVI空间分布数据 | 2010年研究区Landsat TM遥感影像 |
社会经济数据 | 研究区所辖区县统计年鉴,以及2010年国务院扶贫办片区监测数据 |
Fig. 2 Technique flowchart图2 技术路线 |
Tab. 2 Index system表2 指标体系 |
类型 | 指标 |
---|---|
自然因素 | DEM、地形破碎度、平均坡度、植被指数(NDVI)、净初级生产力(NPP)、综合灾情指数(SDI) |
社会经济 | 农民人均纯收入、人均GDP、地区生产总值、人均耕地面积、人口自然增长率 |
基础设施 | 人均公路里程、通广播电视的行政村数、通电的行政村数、通宽带网络的行政村数 |
教育卫生 | 学前三年教育毛入学率、高中阶段毛入学率、每万人卫生床位数、有卫生室的行政村数 |
扶贫成效 | 新增和扩建乡村公路里程新增基本农田、新修农田水利设施、解决饮水困难人数 |
Tab. 3 Result of correlation analysis表3 相关性分析结果 |
影响因子 | 相关系数 | 显著性水平 | 影响因子 | 相关系数 | 显著性水平 |
---|---|---|---|---|---|
DEM | -0.503 | 0.306 | 地形破碎度 | -0.049* | 0.004 |
平均坡度 | -1.610** | 0.001 | NDVI | 0.720* | 0.004 |
NPP | 0.190 | 0.068 | 综合灾情指数 | -0.220* | 0.019 |
人均GDP | 0.204 | 0.100 | 地区生产总值 | 0.402 | 0.291 |
人均耕地面积 | 0.126* | 0.040 | 人口自然增长率 | -0.092 | 0.462 |
人均公路里程 | 0.418** | 0.003 | 通广播电视的行政村数 | 0.312 | 0.020 |
通电的行政村数 | 0.526 | 0.028 | 通宽带网络的行政村数 | 0.612 | 0.371 |
学前三年教育毛入学率 | 0.153 | 0.019 | 高中阶段毛入学率 | 0.270* | 0.011 |
每万人卫生床位数 | 1.780 | 0.054 | 有卫生室的行政村数 | 0.419 | 0.152 |
年新增、扩建乡村公路里程 | 0.184* | 0.009 | 年新修农田水利设施 | 0.390* | 0.007 |
年新增基本农田 | 0.444** | 0.001 | 年解决饮水困难人数 | 0.234 | 0.027 |
注:*表示相关系数的显著性水平为0.05;**表示相关系数的显著性水平为0.01 |
Tab. 4 Evaluation standard of natural impoverishing index表4 自然致贫指数评价等级 |
地形破碎度 | 平均坡度 | 综合灾情指数 | NPP | NDVI | 等级 |
---|---|---|---|---|---|
0.31 | 0.3151 | 0.0155 | 1 | 1 | 1(低) |
0.43 | 0.5143 | 0.3150 | 0.9010 | 0.8881 | 2(较低) |
0.56 | 0.6933 | 0.5536 | 0.7531 | 0.6340 | 3(中) |
0.79 | 0.8715 | 0.7135 | 0.6878 | 0.5464 | 4(较高) |
1 | 1 | 1 | 0 | 0.4169 | 5(高) |
Tab. 5 Values of natural impoverishing index for some administrative divisions and counties表5 部分区县自然致贫指数结果 |
行政区 | NII | 行政区 | NII | 行政区 | NII | 行政区 | NII |
---|---|---|---|---|---|---|---|
正安县 | 4.701 | 印江县 | 3.794 | 城步县 | 3.481 | 建始县 | 3.198 |
务川县 | 4.694 | 石阡县 | 3.764 | 石柱县 | 3.459 | 长阳县 | 3.176 |
湄潭县 | 4.517 | 道真县 | 3.741 | 凤冈县 | 3.424 | 酉阳县 | 3.142 |
永顺县 | 4.302 | 新宁县 | 3.705 | 秀山县 | 3.385 | 五峰县 | 1.991 |
古丈县 | 4.296 | 江口县 | 3.698 | 花垣县 | 3.341 | 洪江市 | 1.948 |
龙山县 | 4.018 | 松桃县 | 3.656 | 慈利县 | 3.329 | 桑植县 | 1.869 |
沿河县 | 3.972 | 来凤县 | 3.632 | 秭归县 | 3.299 | 沅陵县 | 1.802 |
洞口县 | 3.963 | 通道县 | 3.524 | 保靖县 | 3.238 | 芷江县 | 1.798 |
思南县 | 3.831 | 安化县 | 3.521 | 武冈市 | 3.213 | 辰溪县 | 1.790 |
新晃县 | 3.809 | 中方县 | 3.487 | 新化县 | 3.201 | 黔江区 | 1.721 |
Fig. 3 Spatial distribution map of NPI, EPAI, RDP图3 自然致贫指数、社会经济消贫指数、贫困程度空间分布图 |
Tab. 6 Evaluation standard of socio-economic poverty alleviation index表6 社会经济消贫指数评价等级 |
人均GDP | 人均耕地面积 | 人均公路里程 | 通广播电视的行政村数 | 通电的行政村数 | 学前三年教育毛入园率 | 高中阶段毛入学率 | ||
---|---|---|---|---|---|---|---|---|
0.0490 | 0.035 | 0.2811 | 0.3180 | 0.3090 | 0.210 | 0.298 | ||
0.2532 | 0.335 | 0.4071 | 0.4409 | 0.4971 | 0.398 | 0.476 | ||
0.5021 | 0.621 | 0.5933 | 0.5789 | 0.5932 | 0.576 | 0.643 | ||
0.7103 | 0.804 | 0.7229 | 0.7667 | 0.728 | 0.783 | 0.781 | ||
1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
每万人卫生床位数 | 新增和改扩建乡村公路里程 | 新增基本农田 | 新修农田水利设施 | 解决饮水困难人数 | 等级 | |||
0.0550 | 0 | 0 | 0 | 0 | 1(低) | |||
0.1907 | 0.0911 | 0.0907 | 0.1260 | 0.1214 | 2(较低) | |||
0.3704 | 0.2089 | 0.2337 | 0.4609 | 0.3398 | 3(中) | |||
0.6167 | 0.6667 | 0.3029 | 0.7257 | 0.5825 | 4(较高) | |||
1 | 1 | 1 | 1 | 1 | 5(高) |
Tab. 7 Values of socio-economic poverty alleviation index for some administrative divisions and counties表7 部分区县社会经济消贫指数结果 |
行政区 | EPAI | 行政区 | EPAI | 行政区 | EPAI | 行政区 | EPAI |
---|---|---|---|---|---|---|---|
黔江区 | 3.891 | 长阳县 | 3.242 | 邵阳县 | 1.821 | 新化县 | 1.382 |
秭归县 | 3.752 | 洪江市 | 3.206 | 江口县 | 1.811 | 通道县 | 1.362 |
石柱县 | 3.643 | 泸溪县 | 3.199 | 松桃县 | 1.794 | 沿河县 | 1.341 |
慈利县 | 3.486 | 彭水县 | 3.156 | 秀山县 | 1.776 | 中方县 | 1.298 |
利川市 | 3.412 | 印江县 | 3.139 | 新宁县 | 1.763 | 城步县 | 1.272 |
五峰县 | 3.401 | 思南县 | 3.083 | 新晃县 | 1.493 | 正安县 | 1.256 |
凤冈县 | 3.389 | 湄潭县 | 3.034 | 安化县 | 1.481 | 永顺县 | 1.198 |
恩施市 | 3.301 | 石阡县 | 1.951 | 来凤县 | 1.475 | 龙山县 | 1.093 |
巴东县 | 3.286 | 花垣县 | 1.869 | 溆浦县 | 1.453 | 古丈县 | 1.074 |
石门县 | 3.272 | 道真县 | 1.841 | 隆回县 | 1.427 |
Tab. 8 Values of region degree of property for some administrative divisions and counties表8 部分区县贫困程度结果 |
行政区 | RDP | 行政区 | RDP | 行政区 | RDP |
---|---|---|---|---|---|
正安县 | 4.111 | 新宁县 | 3.052 | 玉屏县 | 1.823 |
古丈县 | 3.835 | 通道县 | 3.044 | 宣恩县 | 1.818 |
永顺县 | 3.787 | 城步县 | 3.038 | 咸丰县 | 1.798 |
务川县 | 3.737 | 中方县 | 3.034 | 石门县 | 1.710 |
龙山县 | 3.579 | 石阡县 | 3.030 | 沅陵县 | 1.422 |
沿河县 | 3.439 | 江口县 | 3.028 | 芷江县 | 1.419 |
新晃县 | 3.240 | 松桃县 | 3.000 | 桑植县 | 1.401 |
洞口县 | 3.170 | 安化县 | 3.000 | 辰溪县 | 1.380 |
湄潭县 | 3.147 | 泸溪县 | 1.874 | 洪江市 | 1.323 |
来凤县 | 3.096 | 武隆县 | 1.869 | 五峰县 | 1.314 |
道真县 | 3.052 | 利川市 | 1.853 | 黔江区 | 1.051 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
/
〈 | 〉 |