Journal of Geo-information Science >
Wetland Information Extraction of ZY-1 02C Image Based on the Object and DEM
Received date: 2014-12-08
Request revised date: 2015-01-26
Online published: 2015-09-07
Copyright
With the application of high resolution remote sensing image, the object-oriented technology has been developing rapidly in high resolution remote sensing image information extraction. Many scholars are interested in conducting research and application in this field, but the study of ZY-1 02C satellite imagery is rare. This paper uses the method of combining object-oriented classification and DEM data, to extract the wetland information of ZY-1 02C satellite image, and explores the application of this method in wetland information extraction from ZY-1 02C satellite imagery. It is of great significance to the research on the application of domestic satellite in wetland monitoring and protection. The results showed that: (1) ZY-1 02C satellite imagery has relatively high resolution, rich spatial information and large local heterogeneity. In addition, its spectral characteristics among various types of wetland are similar. The proposed object-oriented remote sensing image information extraction considers both the image’s spectral information and spatial information. It is applied to ZY-1 02C satellite imagery for the wetland information extraction, and the precision of its classification result is significantly higher than the pixel-based method. (2) This article has explored the method of combining object-oriented classification and DEM. The DEM data was taken as an additional band of image and was associated with the three original bands from the image to be involved in the segmentation, and the segmented objects are classified. The confusion between marsh and grass lands during the extraction is reduced, and the accuracy of wetland type classification is further improved. This method is suitable for wetland information extraction from high resolution remote sensing image. (3) The information extraction results based on object-oriented classification and DEM showed that, the precisions of paddy fields, water body, marsh and tidal flats are 97.44%, 86.96%, 88.46% and 88.46% respectively, which satisfy the wetland monitoring and protection requirements of 02C remote sensing image.
Key words: object-oriented; DEM; 02C remote sensing image; wetland; information extraction
CHEN Jianlong , WANG Yumeng , HOU Shutao , YANG Houxiang . Wetland Information Extraction of ZY-1 02C Image Based on the Object and DEM[J]. Journal of Geo-information Science, 2015 , 17(9) : 1102 -1109 . DOI: 10.3724/SP.J.1047.2015.01103
Fig. 1 The figure of study area location and DEM图1 研究区位置及DEM图 |
Fig. 2 Supervised classification results图2 监督分类结果图 |
Tab. 1 The connotation of the multi-scale segmentation parameters表1 多尺度分割的参数内涵 |
分割参数 | ||||
---|---|---|---|---|
分割尺度 | 同质性标准 | |||
光谱权重 | 形状权重 | 形状参数设置 | ||
光滑度 | 紧致度 | |||
≥0 | 1-w | w | wsmooth | 1-wsmooth |
Fig. 3 The figure of segmentation results图3 分割效果图 |
Fig. 4 The object-oriented classification results图4 面向对象的分类结果 |
Tab. 2 The accuracy of error evaluation matrix by supervised classification表2 监督分类的精度误差评估矩阵 |
类型 | 旱田 | 林地 | 草地 | 盐碱地 | 建设用地 | 水田 | 水体 | 沼泽地 | 河滩 | 合计 | 生产者精度(%) | 用户精度(%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
分类数据 | 非湿地 | 旱田 | 71 | 3 | 6 | 3 | 3 | 86 | 88.75 | 82.56 | ||||
林地 | 2 | 35 | 2 | 3 | 1 | 1 | 44 | 83.33 | 79.55 | |||||
草地 | 6 | 3 | 49 | 1 | 7 | 66 | 77.78 | 74.24 | ||||||
盐碱地 | 3 | 1 | 1 | 5 | 50.00 | 60.00 | ||||||||
建设用地 | 2 | 3 | 5 | 50.00 | 60.00 | |||||||||
湿地 | 水田 | 1 | 1 | 2 | 17 | 1 | 4 | 26 | 65.38 | 65.38 | ||||
水体 | 35 | 3 | 1 | 39 | 92.10 | 89.74 | ||||||||
沼泽地 | 4 | 2 | 1 | 16 | 23 | 47.05 | 69.56 | |||||||
河滩 | 1 | 2 | 3 | 6 | 60.00 | 50.00 | ||||||||
合计 | 80 | 42 | 63 | 6 | 6 | 26 | 38 | 34 | 5 | 300 | ||||
总体精度(%) | 77.33 |
Tab. 3 The precision of object-oriented error evaluation matrix (no superposition of DEM)表3 面向对象的精度误差评估矩阵(未叠加DEM) |
类型 | 旱田 | 林地 | 草地 | 盐碱地 | 建设用地 | 水田 | 水体 | 沼泽地 | 河滩 | 合计 | 生产者精度(%) | 用户精度(%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
分类数据 | 非湿地 | 旱田 | 79 | 1 | 2 | 2 | 2 | 86 | 95.18 | 91.86 | ||||
林地 | 2 | 38 | 2 | 1 | 1 | 44 | 92.68 | 86.36 | ||||||
草地 | 2 | 2 | 56 | 5 | 1 | 66 | 87.50 | 84.85 | ||||||
盐碱地 | 4 | 1 | 5 | 57.14 | 80.00 | |||||||||
建设用地 | 2 | 3 | 5 | 60.00 | 60.00 | |||||||||
湿地 | 水田 | 2 | 22 | 2 | 26 | 84.62 | 84.62 | |||||||
水体 | 37 | 1 | 1 | 39 | 97.37 | 94.87 | ||||||||
沼泽地 | 2 | 1 | 1 | 19 | 23 | 63.33 | 82.61 | |||||||
河滩 | 1 | 1 | 4 | 6 | 66.67 | 66.67 | ||||||||
合计 | 83 | 41 | 64 | 7 | 5 | 26 | 38 | 30 | 6 | 300 | ||||
总体精度(%) | 87.33 |
Tab. 4 The precision of object-oriented error evaluation matrix (superposition of DEM)表4 面向对象的精度误差评估矩阵(叠加DEM) |
类型 | 旱田 | 林地 | 草地 | 盐碱地 | 建设用地 | 水田 | 水体 | 沼泽地 | 河滩 | 合计 | 生产者精度(%) | 用户精度(%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
分类数据 | 非湿地 | 旱田 | 81 | 1 | 2 | 1 | 1 | 86 | 95.29 | 94.19 | ||||
林地 | 2 | 40 | 2 | 44 | 95.24 | 90.91 | ||||||||
草地 | 2 | 1 | 60 | 2 | 1 | 66 | 90.91 | 90.91 | ||||||
盐碱地 | 4 | 1 | 5 | 57.14 | 80.00 | |||||||||
建设用地 | 1 | 4 | 5 | 80.00 | 80.00 | |||||||||
湿地 | 水田 | 2 | 23 | 1 | 26 | 92.00 | 88.46 | |||||||
水体 | 38 | 1 | 39 | 97.44 | 97.44 | |||||||||
沼泽地 | 1 | 1 | 1 | 20 | 23 | 83.33 | 86.96 | |||||||
河滩 | 1 | 5 | 6 | 71.43 | 83.33 | |||||||||
合计 | 85 | 42 | 66 | 7 | 5 | 25 | 39 | 24 | 7 | 300 | ||||
总体精度(%) | 91.67 |
Fig. 5 Average heights of different land use types图5 不同用地类型的平均高程对比图 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
中国资源卫星应用中心.资源一号02C卫星[EB/OL].[2012-07-25].EB/OL].[<date-in-citation content-type="access-date">2012-07-5</date-in-citation>].
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
/
〈 | 〉 |