2015 , Vol. 17 >Issue 10: 1143 - 1151

Orginal Article

A Research of Map-Matching Method for Massive Floating Car Data

• WANG Xiaomeng , 1, 2 ,
• CHI Tianhe , 2, * ,
• LIN Hui 1, 2 ,
• SHAO Jing 1, 2 ,
• YAO Xiaojing 1, 2 ,
• YANG Lina 2
Expand
• 1. University of Chinese Academy of Sciences, Beijing 100049, China
• 2. Institute of Remote Sensing and Digital Earth, CAS, Beijing 100101, China
*Corresponding author: CHI Tianhe, E-mail:

Request revised date: 2015-05-15

Online published: 2015-10-10

《地球信息科学学报》编辑部 所有

### Abstract

WANG Xiaomeng , CHI Tianhe , LIN Hui , SHAO Jing , YAO Xiaojing , YANG Lina . A Research of Map-Matching Method for Massive Floating Car Data[J]. Journal of Geo-information Science, 2015 , 17(10) : 1143 -1151 .

### 2 地图匹配模型

#### 2.1 基于HMM的地图匹配

$J n = Pr t n | s max s n - 1 ∈ S n - 1 Pr s n - 1 , s n J n - 1$ （1）

HMM-MM分为候选路段筛选和路径匹配2个关键步骤,候选路段筛选包括邻近路段查找、初次筛选、发射概率计算和候选集优化等内容,得到候选路段集合后根据路径匹配算法递推得到最优路径,期间路段转移概率通过预先处理的路段转移矩阵得到,模型工作流程如图2所示。

#### 2.2 候选路段筛选

##### Fig. 3 Road segment selecting by included angles and distances

$f grid x , y = Int y - Y min L cell × N ew + Int x - X min L cell + 1$ （2）

##### Fig. 4 Candidate road segments searching by grids

$Pr t n | s = Pr d n , α n | s = w d f d d n s + w α f α α n s$ （3）

$Pr t n | s = w d 1 2 π σ exp - d n s 2 2 σ 2 + w α λ e - λ α n s$ （4）

$CS S n = s , p | p = Pr t n | s , s ∈ S S n , 且满足 d max 和 α max 约束条件$ (5)

$CS S n = s , p | p = Pr t n | s , s ∈ S S n ⋃ N S n , 且满足 d max 和 α max 约束条件$ (6)

#### 2.3 路段转移矩阵

$D = d 1 1 ⋯ d 1 n ⋮ d i j ⋮ d n 1 ⋯ d n n$ (7)

$SD = s i , s j , d i j , p i j | s i , s i ∈ S , 且 d i j ≤ S D max$ (8)

$Pr s i , s j = β e - β d i j d i j ≤ S D max$ （9）

### 4 结论

The authors have declared that no competing interests exist.

 [1] Yuan Y F, Van Lint H, Van Wageningen-Kessels F, et al. Network-wide traffic state estimation using loop detector and floating car data[J]. Journal of Intelligent Transportation Systems, 2014,18(1):41-50.
 [2] Yuan J, ZhengY, Xie X, et al. T-Drive: Enhancing driving directions with taxi drivers' intelligence[J]. IEEE Transactions on Knowledge and Data Engineering, 2013,26(1):220-232.
 [3] Mori U, Mendiburu A, Álvarez M, et al.A review of travel time estimation and forecasting for advanced traveller information systems[J]. Transportmetrica a-Transport Science, 2015,11(2):119-157.
 [4] Yuan N J, Zheng Y, Xie X, et al.Discovering urban functional zones using latent activity trajectories[J]. IEEE Transactions on Knowledge and Data Engineering, 2015,27(3):712-725.
 [5] Quddus M A, Ochieng W Y, Noland R B.Current map-matching algorithms for transport applications: State-of-the art and future research directions[J]. Transportation Research Part C:Emerging Technologies, 2007,15(5):312-328.
 [6] Marchal F, Hackney J, Axhausen K.Efficient map matching of large global positioning system data sets: Tests on speed-monitoring experiment in zürich[J]. Transportation Research Record: Journal of the Transportation Research Board, 2005,1935:93-100.
 [7] Pyo J S, Shin D H, Sung T K.Development of a map matching method using the multiple hypothesis technique[C]. Proceedings of IEEE Intelligent Transportation Systems, 2001:23-27.
 [8] Raymond R, Morimura T, Osogami T.Map matching with Hidden Markov Model on sampled road network[C]. Pattern Recognition (ICPR), IEEE, 2012:2242-2245.
 [9] 章威,徐建闽,林绵峰.基于大规模浮动车数据的地图匹配算法[J].交通运输系统工程与信息,2007,7(2):39-45.
 [10] 李宇光,李清泉.利用地图栅格化的海量浮动车数据道路匹配快速算法[J].武汉大学学报(信息科学版),2014,39(6):724-728,733.
 [11] Lou Y, Zhang C Y, Zheng Y, et al.Map-matching for low-sampling-rate GPS trajectories[C]. ACM SIGSPATIAL GIS, 2009:352-361.
 [12] Newson P, Krumm J.Hidden Markov map matching through noise and sparseness[C]. Workshop on Advances in Geographic Information Systems, 2009:336-343.
 [13] Goh C Y, Dauwels J, Mitrovic N, et al.Online map-matching based on Hidden Markov model for real-time traffic sensing applications[C]. 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2012:776-781.
 [14] 李清泉,黄练.基于GPS轨迹数据的地图匹配算法[J].测绘学报,2010,39(2):207-212.
 [15] Chen B Y, Yuan H, Li Q Q.Map-matching algorithm for large-scale low-frequency floating car data[J]. International Journal of Geographical Information Science, 2014,28(1):22-38.
 [16] Brakatsoulas S, Pfoser D, Salas R, et al.On map-matching vehicle tracking data[C]. In Proc. 31st VLDB Conference, 2005:853-864.
 [17] Wang W, Jin J, Ran B, et al.Large-scale freeway network traffic monitoring: A map-matching algorithm based on low-logging frequency GPS probe data[J]. Journal of Intelligent Transportation Systems, 2011,15(2):63-74.
 [18] He Z C, She X W, Zhuang L J, et al.On-line map-matching framework for floating car data with low sampling rate in urban road networks[J]. IET Intelligent Transport Systems, 2013,7(4):404-414.
 [19] Gutierrez E, Medaglia A L.Labeling algorithm for the shortest path problem with turn prohibitions with application to large-scale road networks[J]. Annals of Operations Research, 2008,157(1):169-182.
 [20] Miwa T, Kiuchi D, Yamamoto T, et al.Development of map matching algorithm for low frequency probe data[J]. Transportation Research Part C: Emerging Technologies, 2012,22:132-145.
Options
Outlines

/

 〈 〉