Journal of Geo-information Science >
The Research of Expression Method on Geological Fault Modeling
Received date: 2015-09-21
Request revised date: 2015-10-20
Online published: 2016-10-25
Copyright
The limitations of expressing faults, the interpolation dilemma and other problems exist in the 3D modeling and the visualization technique of geological faults. Through our research, the reason why these problems exist is that these methods mainly focus on the geometrical morphology of the geological faults and do not concern the formation mechanism of the geological faults. As we all know, no matter how complex the geologic bodies that containing the geological faults are, the formation mechanisms which they depend on are similar. Besides, the modeling of the geologic faults is composed of a series of processes. If we can model the faults through certain ways to express their formation mechanisms, then we may solve the above mentioned problems and limitations. Thus, we proposed an expression method to express the formation mechanism for modeling and visualizing the geological faults. Firstly, we analyzed the operands and operators needed to construct the geological fault expression, constructed the rules for the expression based on the theory of formation mechanism of the geological faults, and used the context-free grammar rules to describe the rules for fault expression based on the formation mechanism. Then, we formated the original fault exploration data to the standardize 2D data table, extracted the operators and operands from the 2D data table to construct the expression of geological faults. Finally, we calculated the expression fomular to generate the abstract faults model and achieved the three-dimensional geological modeling with the relevant exploration data based on the abstract faults model. Experiment is carried out based on DaLian River geological data which comprising a plurality of geological faults. Geological modeling results show that the expression method solves the limitations of fault expression, and avoids the interpolation dilemma accured in the geological layer fracture zone.
SUN Jingguang , GAO Tianpeng . The Research of Expression Method on Geological Fault Modeling[J]. Journal of Geo-information Science, 2016 , 18(10) : 1322 -1331 . DOI: 10.3724/SP.J.1047.2016.01322
Tab.1 Operators of fault expression method表1 断层表达式方法算子集合 |
算子 | 目数 | 结合性 | 优先级 | 类型 |
---|---|---|---|---|
u(Up) | 单 | 左 | 1 | 几何算子 |
d(Down) | 单 | 左 | 1 | 几何算子 |
t(Translate) | 单 | 左 | 1 | 几何算子 |
r(Rotate) | 单 | 左 | 1 | 几何算子 |
p(Topology) | 双 | 右 | 2 | 拓扑算子 |
=(Assignment) | 双 | 左 | 2 | 混合算子 |
Fig.1 Sub geological unit and abstract fault model图1 子地质体和断层抽象模型 |
Tab.2 Standardization of two-dimensional tables表2 规范化二维表 |
表名 | 字段名 |
---|---|
断层描述表 | 编号、类型、优先级、起始位置、终止位置、倾向、 倾角、位移、旋转扩展、标志位、其他 |
层线数据表 | 编号、所属断层 编号、采样点集数据表指针、起始点、终止点、其它 |
点数据表 | 编号、所属断层编号、坐标、其它 |
子地质体数据表 | 编号、所属断层编号、面集合、其它、编号 |
采样点集数据表 | 所属断层线编号、坐标、其它 |
Fig.2 The process of creating the abstract fault model图2 断层地质体抽象模型的构建流程 |
Fig.3 Indication of no intersection图3 不相交 |
Fig.4 T type intersection图4 T型相交 |
Fig.5 X type intersection图5 X型相交 |
Fig.6 The object set图6 对象集合 |
Tab.3 Operator set of fault expression表3 断层表达式方法算子集合 |
断层类型 | 算子集合(旋转扩展) | 算子集合 |
---|---|---|
正断层 | d、r | d |
逆断层 | u、r | u |
平移断层 | t、r | t |
正-平移断层 | d、t、r | d、t |
逆-平移断层 | u、t、r | u、t |
Fig.7 Structure ofa图7 断层结构图 |
Fig.8 Structure of图8 断层结构图 |
Tab.4 Data indication of the fault description table表4 断层描述表数据示意 |
编号 | 类型 | 优先级 | 起始位置 | 终止位置 | 倾向 | 倾角 | 位移 | 旋转扩展 | 标志位 |
---|---|---|---|---|---|---|---|---|---|
fault-A | 正断层 | 3 | 528 822.6059,5 113 857.152,-75.26 | 528 498.1747,5 114 089.661,-4.5523 | 2.2528, 2.086, -9.897 | 72.44 | -0.1877, 7.633, -11.7466 | 见表5 | 1 |
fault-B | 正断层 | 2 | 528 700,5 113 772.154,-76.62 | 528 073.5928,5 113 713.364,-102.62 | 50.6899,18.393, -11.71 | 82.34 | -6.144, -5.716, -20.00 | null | 1 |
fault-C | 正断层 | 1 | 526 804.3254,5 113 154.351,-103.89 | 526 993.2164,5 114 005.912,6.8673 | 7.1764, -9.099, -20.24 | 68.23 | 17.7343, -22.972, -23.68 | null | 1 |
Tab.5 Data indication of the rotation expansion of fault-A表5 断层fault-A旋转扩展数据示意 |
轴位置 | 轴向量 | 旋转角度 |
---|---|---|
528 498.1747,5 114 089.661,-4.5523 | 0.5882,0.6657,0.4592 | 22.34 |
Tab.6 Data indication of the fault line table表6 断层线数据表数据示意 |
编号 | 所属断层编号 | 采样点集数据表指针 | 起始点 | 终止点 |
---|---|---|---|---|
fl-01 | falut-A | sample-pt | 528 824.8587,5 113 859.238, -85.157 | 528 498.275,5 114 096.104, -14.469 |
fl-02 | falut-B | sample-pt | 528 750.6899,5 113 790.547, -88.330 | 528 073.5928,5 113 713.364, -113.330 |
fl-03 | fault-C | sample-pt | 526 811.5018,5 113 144.252, -124.130 | 526 993.2164,5 114 005.912, -5.627 |
Tab.7 Data indication of the fault point table表7 断点数据表数据示意 |
编号 | 所属断层编号 | 坐标 |
---|---|---|
pt-fl-01-001 | fault-01 | 526 804.3254,5 113 153.351,-103.89 |
pt-fl-01-002 | fault-01 | 526 868.7078,5 113 518.247, -58.93 |
pt-fl-01-003 | fault-01 | 526 928.5775,5 113 855.739, -27.66 |
pt-fl-01-004 | fault-01 | 526 947.4465,5 113 926.165, -20.85 |
pt-fl-01-005 | fault-01 | 526 993.2164,5 114 005.912, 6.86 |
… | … | … |
Tab.8 Data indication of the sample points table表8 采样点集数据表(sample-pt)数据示意 |
编号 | 所属断层线编号 | 坐标 |
---|---|---|
1 spt-fl-01-001 | fl-01 | 526 951.535,5 113 925.42,-33.35 |
2 spt-fl-01-002 | fl-01 | 526 935.531,5 113 849.70, -43.89 |
3 spt-fl-01-003 | fl-01 | 526 875.784,5 113 510.98, -76.99 |
4 spt-fl-01-004 | fl-02 | 528 737.342,5 113 784.59, -88.33 |
5 spt-fl-01-005 | fl-02 | 528 700.000,5 113 772.15, -87.33 |
… | … | … |
Fig.9 The 3D model of Dalian river geologic body图9 达连河地质体三维模型 |
Fig.10 The 3D layer model including the faults of DaLian river图10 达连河断层地层三维可视化模型 |
Fig.11 The close view of fault A图11 断层A近展示意图 |
Fig.12 The close view of fault B and C图12 断层B、C近展示意图 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
[
|
[4] |
[
|
[5] |
[
|
[6] |
[
|
[7] |
[
|
[8] |
[
|
[9] |
[
|
[10] |
[
|
[11] |
[
|
[12] |
[
|
[13] |
|
[14] |
[
|
[15] |
[
|
[16] |
[
|
[17] |
|
[18] |
|
[19] |
[
|
/
〈 |
|
〉 |