Journal of Geo-information Science >
Forest Landscape Pattern Analysis Using the Integration of Virtual Forest Environment and Landscape Index Calculation Model
Received date: 2015-10-29
Request revised date: 2016-01-05
Online published: 2017-02-17
Copyright
Forest landscape pattern analysis is the basis for the optimization allocation and planning of forest landscape. Based on the data obtained from the second class survey of forest resources, with the integration of the forest landscape quantitative spatial analysis method and the independently-developed forest landscape visualization system software VisForest, a forest landscape pattern analysis and forest landscape 3D visualization simulation system was developed. This system is integrated with the landscape index calculation model and the geographic information system analysis method. The mainframe of the system was coded on Visual Studio 2008 platform with ArcEngine component and OSG graphics rendering engine incorporated, which has realized the quantitative and visual analysis of landscape pattern. Minhou Baisha national forest farm was taken as an example in this study. According to the dominant tree species, the forest landscape was classified and the landscape composition, patch characteristics and landscape heterogeneity etc. were analyzed. The results showed that the Cunninghamia lanceolate forest, Pinus massoniana forest, Pinus elliottii forest, Schima superba forest and the non-forest land are the dominant landscape types in Minhou Baisha national forest farm. The landscape types are generally versatile and the heterogeneity level is relatively high. Moreover, as the median one of all species, Schima superba is scattered majorly in long and narrow patches with small area. Schima superba’s shape index and fractal dimension number are the largest and its patch shape is intricate and irregular. The 3D visualization simulation of forest landscape provides an intuitive and interactive platform to the research of landscape pattern.
Key words: forest landscape pattern; landscape index; visualization; 2nd-class survey
WANG Lei , CHEN Chongcheng , TANG Liyu . Forest Landscape Pattern Analysis Using the Integration of Virtual Forest Environment and Landscape Index Calculation Model[J]. Journal of Geo-information Science, 2017 , 19(2) : 281 -288 . DOI: 10.3724/SP.J.1047.2017.00281
Tab. 1 The formula used in landscape index calculation表1 景观指数的计算公式 |
景观格局分析 | 景观指数 | 计算公式 |
---|---|---|
景观组成结构 | 斑块类型面积 CA/hm2 | |
斑块面积百分比PLAND | ||
斑块类型个数NP | ||
优势度D | ||
景观斑块特征 | 平均斑块面积 MPA | |
最大斑块指数 LPI | ||
面积加权的平均形状指数AWMSI | ||
面积加权的平均分形维数AWFRAC | ||
景观异质性 | 斑块密度PD/ (块/100hm2) | |
边缘密度ED/ (m/hm2) | ||
Shannon′s多样性指数SHDI | ||
Shannon′s均匀度指数SHEI | ||
景观空间分布 | 平均最小距离 MNN/m | |
聚集度CONT |
注:i表示景观类型的种类,取值为1,2,…,m;j表示某种景观类型的斑块序号,取值为1,2,…,n;aij表示第i种景观类型中第j个斑块的面积;pij表示第i种景观类型中第j个斑块的周长;hij为从斑块ij到它最近的同类型斑块之间的距离;ni表示景观类型i所包括的斑块数量;eik为景观中相应斑块类型的总边缘长度;gij为随机选择的两个相邻小班属于类型i与j的概率;pi为景观中斑块类型i的面积比重;A为景观总体面积;N为斑块总数 |
Fig. 1 The solutions of landscape index integration图1 景观指数集成的方案 |
Fig. 2 The diagram of system architecture图2 系统体系结构图 |
Fig. 3 The calculation results of landscape index图3 景观指数的计算结果 |
Fig. 4 The three-dimensional simulation of forest landscape图4 森林景观三维模拟 |
Tab. 2 The landscape index values of Baisha national forest farm表2 白沙国有林场的各景观指数值 |
指标 | 杉木林 | 马尾松林 | 湿地松林 | 木荷林 | 樟树林 | 桉树林 | 毛竹林 | 果树林 | 非林地 |
---|---|---|---|---|---|---|---|---|---|
斑块数 | 393 | 185 | 133 | 165 | 20 | 35 | 17 | 50 | 270 |
斑块数百分比/% | 30.99 | 14.59 | 10.49 | 13.01 | 1.58 | 2.76 | 1.34 | 3.95 | 21.29 |
斑块类型面积/hm2 | 1790.13 | 778.84 | 715.41 | 390.04 | 60.82 | 155.53 | 37.12 | 132.11 | 950.07 |
斑块类型面积比/% | 35.73 | 15.55 | 14.28 | 7.79 | 1.21 | 3.10 | 0.74 | 2.64 | 18.96 |
优势度/% | 33.36 | 15.07 | 12.38 | 10.40 | 1.40 | 2.93 | 1.04 | 3.29 | 20.13 |
平均斑块面积/hm2 | 4.56 | 4.21 | 5.38 | 2.36 | 3.04 | 4.44 | 2.18 | 2.64 | 3.52 |
斑块面积标准差 | 3.37 | 3.35 | 3.89 | 2.27 | 3.62 | 3.18 | 1.93 | 2.42 | 8.54 |
斑块面积变动系数 | 74.07 | 79.63 | 72.25 | 95.88 | 119.08 | 71.65 | 88.32 | 91.60 | 242.76 |
最大斑块指数 | 0.35 | 0.32 | 0.40 | 0.34 | 0.33 | 0.28 | 0.13 | 0.23 | 2.25 |
面积加权的平均形状指数 | 1.48 | 1.47 | 1.41 | 4.37 | 1.37 | 1.41 | 1.52 | 1.38 | 2.01 |
面积加权的平均分形维数 | 1.07 | 1.06 | 1.06 | 1.22 | 1.06 | 1.06 | 1.08 | 1.06 | 1.11 |
斑块密度 | 7.84 | 3.69 | 2.65 | 3.29 | 0.40 | 0.70 | 0.34 | 1.00 | 5.39 |
边缘密度 | 89.92 | 40.50 | 32.15 | 82.44 | 3.31 | 7.65 | 2.69 | 8.17 | 55.49 |
平均最小距离 | 114.57 | 224.65 | 324.36 | 50.17 | 1270.31 | 502.01 | 790.37 | 649.4 | 112.86 |
聚集度 | 86.27 | 82.65 | 86.47 | 51.85 | 81.29 | 89.19 | 72.77 | 81.53 | 79.70 |
Fig. 5 The spatial distribution of forest landscape patch (a clip of the original figure)图5 森林景观斑块空间分布图(部分) |
Fig. 6 The three-dimensional simulation of Cunninghamia lanceolate forest图6 杉木林分三维模拟 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
[
|
[4] |
[
|
[5] |
|
[6] |
|
[7] |
[
|
[8] |
[
|
[9] |
|
[10] |
|
[11] |
[
|
[12] |
[
|
[13] |
[
|
[14] |
[
|
[15] |
[
|
[16] |
[
|
[17] |
|
[18] |
[
|
/
〈 | 〉 |