Orginal Article

Evaluation of Intensive Coastline Utilization of Tianjin Center Harbor

  • YANG Lijuan , 1 ,
  • XU Hanqiu , 1, * ,
  • TANG Fei 2 ,
  • FU Wei 1 ,
  • WANG Meiya 1 ,
  • SUN Feng-qin 1
Expand
  • 1. College of Environment and Resources, Institute of Remote Sensing Information Engineering, Fuzhou University, Fuzhou 350116,China
  • 2. Island Research Center, State Oceanic Administration, Pingtan 350400, China
*Corresponding author: XU Hanqiu, E-mail:

Received date: 2016-06-13

  Request revised date: 2016-10-13

  Online published: 2017-03-20

Copyright

《地球信息科学学报》编辑部 所有

Abstract

As the natural intersection belt of land and ocean areas, coastline zone plays a key role in promoting regional economic development. Therefore, the evaluation of coastline utilization is of great importance for coastline resource management. This paper firstly created an index system for the evaluation of coastline resource. Then, for optimal allocation of coastline resource, an evaluation index system for intensive coastline utilization based on remote sensing data as well as socio-economic data was proposed. Through interpreting two SPOT remote sensing images and field survey, all the index values were obtained. Then, two multi-factor evaluation models, coastline resource evaluation model and intensive coastline utilization evaluation model, were established based on the analytical hierarchy process (AHP). Tianjin center harbor, China, was taken to validate the feasibility of the models. The interpretation and analysis of remote sensing data of the harbor between 2006 and 2015 indicated that: (1) Tianjin center harbor covers an area of 2639.16 hm2, of which 1451.46 hm2 is the land reclamation area, accounting for 55% of the total area; (2) the length of coastline surrounding the harbor was 2.46 km in 2006, but increased to 10.84 km in 2015 due to the land reclamation; and (3) the utilized land reclamation area is 527.76 hm2, accounting for a proportion of 36.36%.The application of the aforementioned evaluation models to Tianjin Center Harbor on the basis of the information extracted from the remote sensing images and in situ investigation data showed that (1) the coastline-occupation level of the harbor in 2006 can be classified as a third grade with a score of 3.004; (2)the intensive coastline utilization of the harbor reached a comprehensive value of 0.3271, of which the factor of coastline utilization status scored a relatively high value of 0.1611, accounting for 49.25%, while the factor of output-to-input ratio hit a lowest of 0.0565. The analysis results suggested that the two proposed models could work effectively in the evaluation of the coastline resource and intensive coastline utilization for the Tianjin center harbor.

Cite this article

YANG Lijuan , XU Hanqiu , TANG Fei , FU Wei , WANG Meiya , SUN Feng-qin . Evaluation of Intensive Coastline Utilization of Tianjin Center Harbor[J]. Journal of Geo-information Science, 2017 , 19(3) : 417 -424 . DOI: 10.3724/SP.J.1047.2017.00417

1 引言

岸线是具有自然和人工双重属性的稀缺性 国土资源,对促进区域经济发展具有重要的战略意义[1-4]。随着沿海地区的开发规模不断扩大,为了满足土地需求,许多国家纷纷进行填海造地活动,在经济发展的同时也给生态环境带来了巨大的灾难。相关研究表明,在过去的70年里,中国大陆海岸线的自然岸线保有比例已不足1/3,岸线利用强度在近20年内急剧上升[5-6];刘百桥等[7]研究表明近23年中国大陆海岸线共增加了1045.54 km,部分地区如环渤海,出现大面积无序的填海造陆工程,严重危害了岸线资源的开发和利用。近几年,由于政府对沿海岸线开发利用的限制,一定程度上减缓了环境恶化的速率[8-10]。尽管如此,有关岸线多占少用,囤积浪费的现象仍有报道[11],因此岸线利用的评价对岸线资源合理的开发和利用至关重要。
传统的岸线资源监测主要以地面测量的方式为主,而遥感对地观测技术以其获取数据范围大、获取信息速度快以及不受地面条件限制的优势已迅速成为岸线资源监测的主要手段[12-19]。随着岸线资源的开发,为了提高岸线资源的利用强度,避免岸线的滥用,有关岸线利用评价方面的研究也在不断开展。Stepanova[20]通过访问专家以及收集文档资料的方法,分析了哥德堡和马尔默的沿海水陆资源的利用冲突,并提出岸线资源可持续利用的策略;任玲[21]通过收集统计数据和资料分析全国沿海规模以上40个港口的岸线集约利用情况;张轶华[22]利用国家统计年鉴和港口年鉴资料,对全国临港工业区岸线利用状况进行了评价;刘家兴[23]采取实地调研与查阅统计年鉴相结合的方法获取港口发展的统计数据,并将其用于岸线集约利用的评价。
从现有评价研究可以发现,遥感技术作为一种成熟的研究手段,多用于岸线资源的监测,而大多数对岸线集约利用评价研究都是建立在以统计数据为数据源的基础上开展的。由于统计数据忽略了许多重要自然因子指标,而这些指标通常可以利用遥感技术来获取。因此,本研究采用一种多指标多因素综合评价法——层次分析法(AHP)[24-27],首先建立了岸线资源评价模型,然后将统计数据和遥感技术相结合构建了岸线集约利用评价模型,并以此对天津中心渔港项目进行综合评价与分析,旨在探求能够建立将自然因子指标与社会经济统计指标综合的评价模型,以求更客观全面地对岸线集约利用进行评价。

2 评价指标体系

2.1 岸线资源评价指标体系

2.1.1 评级指标及权重的确定
岸线资源评价的首要工作是选取评价因子,一般应选择能够反映岸线自然属性以及社会经济条件的指标。本文通过反复研究和实地调查,最终选取自然环境条件、海域通航条件、陆域集疏条件、陆域宽度以及社会经济条件5个评级指标,涵盖包括水文条件在内的11个影响因子,构建了岸线资源评价指标体系。为使指标权重更具客观性,本次研究采用专家打分和层次分析法相结合来确定各指标和影响因子的权重。层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性和定量相结合的将多目标、多准则的决策问题转化为多层次单目标问题的方法,目前已广泛应用于各领域的决策分析。本文首先通过广泛咨询港口岸线方面的专家以及采用问卷形式邀请相关专家对各指标及其影响因子进行打分;其次利用层次分析法最终确定各指标及影响因子的权重(表1)。
Tab.1 The evaluation index system of coastline resource

表1 岸线资源评价指标及权重

指标 权重 影响因子 权重
自然环境条件 0.2661 水文条件 0.1167
海洋水质条件 0.1183
岸线长度 0.0789
陆域生态环境 0.2205
水深条件 0.3574
海岸类型 0.1082
海域通航条件 0.2102 航道、锚地条件 1.0000
陆域集疏条件 0.1693 道路通达度 1.0000
陆域宽度 0.1434 陆域宽度 1.0000
社会经济条件 0.2110 产业配套设施完备度 0.4550
开发现状 0.5450
2.1.2 影响因子定级标准
根据不同规模港口以及不同吨位船舶对自然环境条件和社会经济条件的技术要求,建立5级标准,即差、较差、中、良、优,并分别赋值1-5分(表2)。
Tab.2 The grading standard of impact factor

表2 影响因子定级标准

优(5分) 良(4分) 中(3分) 较差(2分) 差(1分)
水文条件 岸线很稳定 岸线稳定 岸线微冲 岸线较不稳定 岸线不稳定
海洋水质条件 Ⅰ类(清洁) Ⅱ类(较清洁) Ⅲ类(轻度污染) Ⅳ类(中度污染) Ⅴ类(严重污染)
岸线长度/m >3500 2000~3500 1000~2000 500~1000 <500
陆域生态环境 优(一级) 良(二级) 一般(三级) 较差(四级) 差(五级)
水深条件/m >20 15~20 10~15 5~10 <5
海岸类型 基岩海岸 沙砾质海岸 淤泥质海岸 生物海岸 其他
航道/锚地条件 供10万t船舶停靠 供5万t船舶停靠 供1万t船舶停靠 供5000 t船舶停靠 供1000 t船舶停靠
道路通达度 高速公路(高速/铁路) 一级公路(高速/国道) 二级公路(省道) 三级公路(县道/城郊道路) 四级公路(乡村道路)
陆域宽度/m >1000 800~1000 500~800 100~500 <100
产业配套设施完备度 很完善 较好 基本完备 不全 很不完备
开发现状 属于重点开发岸线 符合岸线总体规划 基本符合岸线总体规划 部分岸线总体规划受限制开发 部分重要岸线总体规划受限制开发

2.2 岸线集约利用评价指标体系

围海造地活动最直接的后果是自然岸线缩短,人工岸线比例不断上升。同时,由于部分围填海区域缺乏合理规划,导致岸线资源浪费,因此开展岸线集约利用研究极为关键。本文在研究土地集约利用理论的基础上,根据岸线利用的现状和特点,从岸线利用状况、岸线投入产出水平、岸线运营强度3个方面,建立岸线集约利用评价指标体系,并同样采用专家打分法和层次分析法确定评价体系各指标及影响因子的权重(表3)。其中,岸线集约利用评价指标体系的各影响因子计算公式如表4所示。
Tab.3 The evaluation index system of intensivecoastline utilization

表3 岸线集约利用评价指标及权重确定

指标 权重 影响因子 权重
岸线利用状况 0.2370 岸线利用率 0.3325
围填海面积开发强度 0.4047
新增码头岸线长度比率 0.2628
岸线投入产出水平 0.3420 固定资产投入产出比率 1.0000
岸线运营强度 0.4210 货物吞吐量强度 1.0000
Tab.4 The calculation formula of impact factor

表4 各影响因子计算公式

影响因子 计算公式
岸线利用率 已使用岸线长度/规划的岸线长度
围填海面积开发强度 围填海建设面积/围填海总面积
新增码头岸线长度比率 新增岸线长度/岸线总长度
固定资产投入产出比率 年平均收益总额/固定年投资额
货物吞吐量强度 货物吞吐量/规划的岸线长度

3 研究区

3.1 研究区概况

渤海是中国北部和部分华东地区的主要出海口。近十几年,为了发展区域经济,环渤海地区的滩涂、盐田、水域逐渐被人工海岸工程所取代,大量的围海造田使环渤海海岸线在30年内缩短了260 km。因此,开展对环渤海相关港口的岸线利用状况评价具有十分重要的意义。
为实现“以渔兴港”和“以港富渔”的战略目标,天津市政府在渤海一带的汉沽区建设“天津中心渔港”经济区,由于天津滨海新区的开发,用于中心渔港经济区建设的陆域土地只能满足渔港城区的建设,其他用地需通过围填海获取,因此本文将重点对其岸线变化和集约利用开展评价研究。本文研究区位于天津市汉沽区高家堡附近,其地理位置为117°49′30.3″~117°53′35.7″ E,39°08′54.3″~39°13′15.01″ N,总面积为2639.16 hm2

3.2 数据源与影像解译

本研究采用SPOT影像作为遥感影像数据源。由于中心渔港于2007年开始建设,港区的基础设施和配套建设于2015年建成,因此,选用2006-11-02(建成前)和2015-05-01(建成后)2期影像(R为近红外,G为红波段,B为绿波段)进行对比研究和评价(图1)。
Fig. 1 The study area of Tianjin center harbor

图1 天津中心渔港研究区

为保证数据结果的准确性,采用二次多项式和最邻近象元法对2个时相遥感影像进行几何配准,配准的均方根误差小于0.5个像元。采用最大似然法监督分类与必要的人工修正对2个时相的遥感影像进行土地覆盖分类,并参照同时相Google Earth高分辨率影像进行精度验证。结果表明:2006年和2015年的分类总精度均高于90%,kappa系数均高于0.85,满足分类研究精度要求。图2表5是研究区2个时相的土地覆盖图及其变化统计表。
Fig. 2 The classification of land cover in Tianjin center harbor

图2 研究区土地覆盖分类

Tab.5 The statistics data of land cover change

表5 天津中心渔港土地覆盖类型变化统计

2006年/hm2 2015年/hm2 2006-2015年变化
面积/ hm2 比例/%
养殖渔排 23.93 - -23.93 -0.91
草地 20.78 125.77 104.99 3.98
水体 2383.46 1187.70 -1195.76 -45.31
建设用地 116.77 313.29 196.52 7.45
未利用地 94.21 923.70 829.49 31.43
林地 - 88.70 88.70 3.36
岸线长度/km 5.04 10.84 5.80
总面积 2639.16
表5可看出,研究区在2006年仍以近岸水域为主,杂有少量养殖渔排,到了2015年,渔港工程建设使得区域内水体总面积骤减1195.76 hm2,养殖渔排全部消失被大面积的建设用地和待建用地所替代。围填海工程显然是造成研究区土地覆盖发生变化的主要原因。
就岸线而言,2006年研究区岸线长度为5.04 km,经过中心渔港的建设后,2015年整个港区形成的人工岸线长达10.84 km,比2006年多了5.8 km。另外,围填海建设占用岸线2.46 km,因此新增的人工岸线为8.26 km。本次研究基于以上影像解译结果和实地调查来评价天津中心渔港的岸线集约利用情况。

4 基于层次分析法的评价模型

4.1 岸线资源评价模型

在岸线资源评价指标体系中,通过渔港海域论证报告和实地调查可获取所有影响因子信息,然后对照表2得出各影响因子的分值(表6)。
Tab.6 The score of impact factor of coastline resource

表6 影响因子得分情况

影响因子 天津中心渔港情况 得分
水文条件 岸线属于侵蚀性岸段,岸线较不稳定 2
海洋水质条件 工程海域属于国家四类海水水质标准(中度污染) 2
岸线长度 占用岸线长度为2.46 km 4
陆域生态环境 陆域环境质量属于二类 4
水深条件 等深线3~5 m 1
海岸类型 岸线属于沙砾质海岸 4
航道、锚地条件 工程所在区域可供5000 t船舶停靠 2
道路通达度 工程区附近有公路,铁路,机场 5
陆域宽度 陆域浅滩纵向约3500 m 5
产业配套设施完备度 通信,医疗,水电基本满足需求 3
开发现状 属于天津岸线开发重点项目 5
在岸线资源评价指标体系的基础上,建立基于层次分析法的岸线资源评价模型。该模型可表示为:
P = i = 1 5 G i W Ai (1)
其中,
G 1 = j = 1 6 Y j W Bj (2)
G 2 = Y 7 W B 7 (3)
G 3 = Y 8 W B 8 (4)
G 4 = Y 9 W B 9 (5)
G 5 = j = 10 11 Y j W Bj (6)
式中:P为岸线资源评价综合得分; G i 为各评级指标得分, W Ai 为各评级指标的权重,其中i=1,2,3,4,5; Y j 为各影响因子得分, W Bj 为各影响因子的权重,其中j =1,2,3,…,11。岸线资源评价综合得分P介于1-5之间,按得分情况将其划分为5个等级,即1级(≥4.2分),2级(3.4-4.2分),3级(2.6-3.4分),4级(1.8-2.6分),5级(1-1.8分)。

4.2 岸线集约利用评价模型

4.2.1 基于遥感技术的评价指标提取
根据建立的岸线集约利用评价指标体系,可用遥感技术提取的指标有:岸线利用率、围填海面积开发强度、新增码头岸线长度比率和货物吞吐量强度指标中的规划岸线长度部分,其他指标信息则由实地调查或社会经济统计数据获取。
通过研究区2个时相的遥感影像数据分析可知:① 天津中心渔港的规划岸线(2.46 km)已全部被开发使用,岸线利用率达100%;② 中心渔港的围填海总面积为1451.46 hm2,由2015年遥感影像可以看出,渔港的土地闲置率较高,已开发建设的围填海面积仅为527.76 hm2,占围填海总面积的36.36%,因此,渔港的围填海开发强度为0.3636;③ 由于围填海建设而形成的人工岸线长达8.26 km,而2015年渔港的岸线总长度为10.84 km,因此二者之比为0.762。
通过实地调查,天津中心渔港的年平均收益与投资总额之比为0.1651;港区的年货物吞吐量强度为691.06万t/km。由于岸线利用率,围填海面积开发强度,新增码头岸线长度比率和固定资产投入产出比率这四个指标值介于0-1之间,而货物吞吐量强度的量纲与其他四个指标不同,为了便于评价,需要将其进行去量纲处理,使其介于0-1之间。由社会经济统计数据可知,近3年港口最大、最小的货物吞吐量强度分别为2574.97万t/km和11.73万t/km,因此去量纲后正规化的货物吞吐量强度值为0.26。表7给出了各指标的计算结果。
Tab.7 The calculation results of impact factors

表7 评价指标计算结果

影响因子 计算公式 计算值 结果
岸线利用率 已使用岸线长度/规划的岸线长度 2.46 /2.46 1.0000
围填海面积开发强度 围填海建设面积/围填海总面积 527.76 /1451.46 0.3636
新增码头岸线长度比率 新增岸线长度/岸线总长度 8.26 /10.84 0.7620
固定资产投入产出比率 年平均收益总额/固定年投资额 5.57/33.75 0.1651
货物吞吐量强度 货物吞吐量/规划的岸线长度 1700/2.46 0.2600*

注:*表示正规化的指标值

4.2.2 岸线集约利用评价模型
根据资源优化配置的原则,以岸线集约利用为最终目标,建立基于层次分析法的岸线集约利用评价模型。该模型表示如下:
V = i = 1 3 H i W Ei (7)
其中,
H 1 = j = 1 3 F j W Fj (8)
H 2 = F 4 W F 4 (9)
H 3 = F 5 W F 5 (10)
式中:V为岸线集约利用评价综合得分; H i 为各指标的得分, W Ei 为各指标的权重,其中i=1,2,3; F j 为各影响因子数据正规化的值, W Fj 为各影响因子的权重,其中j =1,2,3,4,5。

5 评价结果与分析

5.1 岸线资源评价结果及分析

岸线资源的优劣是自然资源条件和社会经济条件等综合影响的结果。根据建立的岸线资源评价模型(式(1)-(6))以及表1、6的指标体系权重和得分,计算出天津中心渔港各影响因子和指标的得分及其最后的综合得分,结果见表8
Tab.8 The score of the evaluation of coastline resource

表8 岸线资源评价得分情况

指标 得分 影响因子 得分
自然环境条件 0.6540 水文条件 0.2334
海洋水质条件 0.2366
岸线长度 0.3156
陆域生态环境 0.8820
水深条件 0.3574
海岸类型 0.4328
海域通航条件 0.2102 航道、锚地条件 2.0000
陆域集疏条件 0.8465 道路通达度 5.0000
陆域宽度 0.4302 陆域宽度 5.0000
社会经济条件 0.8630 产业配套设施完备度 1.3650
开发现状 2.7250
综合得分 3.004
表8可看出,天津中心渔港的岸线资源评价综合得分为3.004分,可判断渔港在2006年占用的岸线等级属于3级。进一步分析可知:
(1)天津中心渔港的岸线自然环境和自然资源条件较差,得分只有0.654(总分1.3305)。由于环渤海岸线资源的过度开发,港区工程海洋水质条件较差,已处于中度污染,且岸线稳定性较弱,因此其自然环境条件得分偏低;
(2)受水深条件的影响,渔港工程所在区域航道仅可供千吨级船舶停靠,港区的海域通航条件较差,因此指标得分最低,仅为0.2102;
(3)天津中心渔港所占用的岸线属于重点开发项目,产业配套设施基本完备,港区毗邻渤海湾,地理位置优越,因此,其社会经济条件和陆域集疏条件良好,指标得分较高。
综上,天津中心渔港所占用的岸线资源等级为3级。在各指标中,海域通航条件和陆域集疏条件直接决定了中心渔港的货运吞吐量强度;而陆域宽度和社会经济条件也在一定程度上影响了渔港的岸线产出水平。因此,如何利用渔港的资源条件,是避免岸线资源浪费提高岸线集约利用的重点。

5.2 岸线集约利用评价结果及分析

天津中心渔港的用海性质属于围填海工程。在获得岸线集约利用评价指标体系的权重以及各指标的得分后,利用已建立的岸线集约利用评价模型(式(7)-(10))对天津中心渔港进行评价,评价结果见表9
Tab.9 The score of the evaluation of intensive coastline utilization

表9 岸线集约利用评价得分情况

指标 得分 影响因子 得分
岸线利用状况 0.1611 岸线利用率 0.3325
围填海面积开发强度 0.1471
新增码头岸线长度比率 0.2002
岸线投入产出水平 0.0565 固定资产投入产出比率 0.1651
岸线运营强度 0.1095 货物吞吐量强度 0.2600
综合得分 0.3271
表9可看出,天津中心渔港的岸线集约利用评价综合得分为0.3271,其中岸线利用状况和岸线运营强度这两个指标的总分为0.2706,占综合得分的82.73%;而岸线投入产出水平得分最低,仅有0.0565,占综合得分的17.27%。
通过分析各影响因子得分可看出:① 天津中心渔港的规划岸线已全部被开发使用,岸线利用率达100%,因此该影响因子得分情况最优,为0.3325;② 渔港的围填海面积开发强度太低,从遥感影像可知,除了已开发建设的土地以及部分林地、草地的面积,未利用地的比例高达63.64%,因此围填海开发强度得分最低,仅为0.1471;③ 由围填海建设形成的人工岸线长达8.26 km,约占岸线总长度的76.2%,因此新增码头岸线长度比率得分较高,为0.2002;④ 根据对天津中心渔港的实地调查可知,渔港自2015年开放以来,年平均收益较低,导致固定资产投入产出比率得分偏低,仅为0.1651;⑤ 天津中心渔港的货物吞吐量强度得分仅为0.26,这是由于渔港还未全部开港,随着港区商港部分的开港,中心渔港的货物吞吐量或将进一步提高。
由以上分析可知,天津中心渔港的岸线利用率得分最优,约为围填海面积开发强度和新增码头岸线长度比率的得分之和;此外,天津中心渔港部分因子得分偏低,原因在于渔港的围填海面积开发强度太弱,一定程度上制约了港区的岸线产出和货物吞吐量强度,从而降低了整体的岸线集约利用强度。因此,如何开发利用围填海区域是天津中心渔港的重要任务。
另外,从一级指标得分可看出:① 天津中心渔港整体的岸线利用状况得分为0.1611,约占总分的49.25%,这是由于岸线利用率和新增码头岸线长度比率2个影响因子的得分较高而导致。同时,围填海面积开发强度得分过低也影响了岸线利用状况指标的得分;② 天津中心渔港的岸线投入产出水平得分最低,仅为0.0565,约占总分的17.27%,主要原因在于渔港的年平均收益过低,导致固定资产投入产出比率得分偏低;其原因可能是港区部分功能片区如水产品集散中心和旅游产业中心还未正式收益,一定程度上影响了年平均产值总额;③ 天津中心渔港的岸线运营强度为691.06万t/km,得分为0.1095,约占总分的33.48%;对比全国主要港口的货物吞吐量强度,天津中心渔港的岸线运营强度偏低。
综上,天津中心渔港岸线集约利用评价的3个指标中,天津中心渔港的岸线利用状况得分约为岸线投入产出水平和岸线运营强度得分之和;岸线投入产出水平和岸线运营强度的得分均不理想,而岸线利用状况指标得分也受到了围填海面积开发强度的限制。本文的岸线集约利用评价模型的综合得分在1以内,而天津中心渔港的岸线集约利用综合得分仅有0.3271,说明其岸线集约利用强度偏低。将本文所提出的模型应用于珠海干散货码头的岸线集约利用评价,模型结果为0.66,远高于天津中心渔港,因此,针对天津中心渔港如何提高岸线集约利用强度提出2条建议:
(1)与其他港口相比,天津中心渔港的围填海建设面积仅占总面积的36.36%,围填海面积开发率低。从遥感影像解译可以看出,该渔港从2007年开始,经过8年时间的开发,仍有大片闲置土地,土地闲置率过高,因此,针对围填海开发方面,天津中心渔港应加速围填海区域的建设,避免资源浪费,达到提高岸线集约利用的目的。
(2)在提高围填海开发强度的同时,相关部门应制定新的渔港管理机制,旨在促进合理的功能布局,优化装卸作业流程;同时,引进高技术设备,提高港口作业效率,进一步提高年平均产值和渔港的市场竞争力。

6 结语

本文利用遥感技术获取了岸线集约利用评价的一些重要自然因子指标信息,弥补了仅凭社会经济统计数据获取指标信息的不足,使所选的指标体系和因子更具客观性和实效性,以及评价结果能更全面反映真实情况。本文建立了岸线资源评价模型和岸线集约利用评价模型,并分别对天津中心渔港占用的岸线及其集约利用进行评价,评价结果较好地体现了中心渔港的岸线资源使用情况以及岸线运营情况。模型评价结果表明了天津中心渔港的岸线资源等级属于3级,岸线集约利用强度偏低。通过分析可知,围填海面积开发强度过低是导致天津中心渔港岸线集约利用偏低的最主要原因。最后,针对天津中心渔港的岸线集约利用结果,提出关于提高天津中心渔港岸线集约利用强度的建议。评价结果可为相关部门提高岸线的集约利用提供有益的参考依据。
另外,针对中国的港口城市岸线开发,本文认为各部门对岸线的管理和利用存在以下3方面问题:
(1)岸线资源是宝贵的、战略性的国家资源,任何不恰当的开发都会导致不同程度的环境破坏,因此,政府应该严格控制岸线开发的比例,一旦发现有严重破坏环境的行为,立即终止该机构的岸线使用权;
(2)政府在考虑环境影响的同时,还应督促机构充分利用岸线资源,避免出现岸线多占少用,囤积浪费的现象;
(3)任何程度的围填海活动都会改变原有的生态系统,因此,拥有岸线使用权的机构在围填海开发过程中,要建立风险防护带,保护港区建设设施,促进港口健康可持续发展。

The authors have declared that no competing interests exist.

[1]
Dolan R, Fenster M S, Holme S J.Temporal analysis of shoreline recession andaccretion[J]. Journal of Coastal Research, 1991,7(3):723-744.The precision with which estimates of shoreline rates-of-change reflect actual changes and predict future changes is dependent on: (1) the accuracy achieved in collecting shoreline position data, (2) the temporal variability of the shoreline movement, (3) the number of measurements used in the computation, (4) the proximity of the observations to actual changes in the trend (sampling bias), (5) the period of time between measurements, (6) the total time span of the record, and (7) the method used to calculate the rate. Over 75% of the data we have assembled in a comprehensive United States shoreline information system (CEIS) were computed using the end point rate (EPR) method. The EPR utilizes only two shoreline positions to calculate rate-of-change values. Methods used less frequently include the average of rates (AOR), linear regression (LR), and jackknife (JK) methods. All of these computation methods fit a linear model to shoreline response. For coastal areas with constant rates of shoreline change through time, the results of all the methods are identical. For a coastline with a non-linear response, a linear estimation method can only approximate the average rate-of-change. As the response of the coastline becomes more non-linear, the differences among the rate-of-change estimates given by the various methods increase. Using data from a 65 km long section of the Outer Banks of North Carolina, we demonstrate the differences in computational methods for estimating shoreline changes and we show how the potential sources of error can bias the final statistics.

DOI

[2]
涂振顺,赵东波,杨顺良,等.港口岸线资源综合评价方法研究及其应用[J].水道港口,2010,31(4):297-301.根据港口岸线资源的自然和社会属性及港口设计规范的要求,构建了以自然环境、资源和社会条件为主要因素的港口岸线资源综合评价指标体系,并结合专家打分法和熵值法确定各项指标权重,最后应用评价多目标决策计算方法获得港口岸线资源优劣的综合评分和理想港口贴近度的评价结果。将该方法应用于福建省港口岸线资源评价,为港口岸线资源合理保护和开发利用提供技术支撑。

DOI

[ Tu Z S, Zhao D B, Yang S L, et al.Method and application of comprehensive evaluation of port shoreline resource[J].Journal of Waterway and Harbor, 2010,31(4):297-301. ]

[3]
Graham D, Sault M, Bailey J.National ocean service shoreline - past, present, and future[J]. Journal of Coastal Research, 2003,38:14-32.Survey of the Coast," a predecessor of the National Ocean Service (NOS) within the National Oceanic and Atmospheric Administration (NOAA), was established by an act of Congress, on February 10, 1807, to survey and map the nation's coastline. Since that time more than 13,000 shoreline survey maps of the United States and its possessions have been produced. The horizontal position of a given natural shoreline will vary depending on the selected vertical reference datum. NOS uses an interpreted mean high-water line for its definition of shoreline. The mean high-water line is not a morphological reference feature but may be interpreted using beach morphological reference features such as berm or wet/dry line as well as contouring. Collection methods have changed over the years from on-site mapping using a planetable to photogrammetric survey mapping, which has been the primary collection method since the 1930s, to the investigation and production integration of commercial satellite imagery, Interferometric Synthetic Aperture Radar, and LIght Detection And Ranging technologies. National Oceanic and Atmospheric Administration shoreline products are becoming more readily available due to ongoing cooperative data rescue efforts that convert original products into an accessible digital form. The list of available products include: raster and hard copies of shoreline manuscripts; vector shoreline from shoreline manuscripts; vector state composites; contemporary vector shoreline data; descriptive records (Descriptive Report or Project Completion Report); and photographs. Digital products are being made available through a web-based application, known as the NOAA Shoreline Data Explorer (NSDE). NOS is in the process of reattributing and formatting historical vector shoreline digitized from shoreline manuscripts into a consistent schema of attributes and data fields. The NSDE is a customized Internet mapping interface application coupled with database capabilities that allow users to view available NOS vector shoreline project boundaries; view selected vector shoreline data from one or more project surveys; view and download dynamically generated Federal Geographic Data Committee (FGDC) metadata which includes a link to descriptive records; make printable maps; and download vector shapefiles with user selected classes (themes) and geographic extent. Ongoing efforts will make raster shoreline indices and manuscripts available through the NSDE. Thus, the NOAA Shoreline Data Explorer is available, as a tool, to spatially view and access contemporary and some historic digital shoreline prodnets.

[4]
王传胜,孙小伍,李建海.基于GIS的内河岸线资源评价研究——以武汉市域长江干流为例[J].自然资源学报,2002,17(1):95-101.内河岸线资源是国土资源的重要组成部分,但专门的评价研究在国内外尚不多见。国内研究始于20世纪80年代末,研究区域集中在长江中下游,研究方法已经从定性发展到定量,并引进了GIS手段。论文首先总结了前人的研究,将岸线评价分为质量分等评价、适宜性评价和综合性评价3种类型,概括为评价单元的划分、单项指标的评价和综合质量分等3个步骤。之后,论文以自然资源评价的理论方法为指导,通过武汉市域长江干流岸线的建港自然条件评价的实例,系统探索了运用GIS方法评价岸线资源的一般程序,将其分为:数据准备、建立数据库、评价实施、成果输出4个步骤。

DOI

[ Wang C S, Sun X W, Li J H.Water-front resources evaluation supported by GIS: A sample on the Changjiang Mainstream in Wuhan metropolis[J]. Journal of Natural Resources, 2002,17(1):95-101. ]

[5]
侯西勇,毋亭,侯婉,等. 20世纪40年代初以来中国大陆海岸线变化特征[J].中国科学:地球科学,2016,46(8):1065-1077.基于多时相地图资料、遥感影像以及覆盖整个大陆海岸带的野外考察,建立20世纪40年代初以来6个时相的中国大陆海岸线数据,并从岸线结构、岸线分形、岸线变化速率、陆海格局和海湾面积等角度分析过去70年来中国大陆海岸线的变化特征.结论如下:大陆海岸线结构变化显著,岸线人工化是最主要的特征,目前自然岸线的保有比例已经不足1/3;大陆海岸线分维数具有"北方整体南方"的宏观格局特征,但近年来北方海岸带急剧的岸线人工化过程通过大大缩小岸线分维数的南北差异而显著改变了中国大陆海岸线的分形特征;大陆沿海的陆海格局与过程特征复杂,超过68%的海岸总体向海扩张,超过22%的海岸总体向陆后退,而净变化结果是陆地面积增加了近1.42万km~2,平均增速为202.82km~2 a~(-1);大陆沿海93个主要海湾的面积萎缩量共约1.01万km~2,整体平均的萎缩率、萎缩速率分别高达18.19%、144.20km~2 a~(-1);渤海海域总面积减少了7.06%,年均减少82km~2.大陆海岸线的剧烈变化导致和加剧了海岸带和近海区域的多种问题,加强对大陆海岸线资源的保护、管理与可持续利用刻不容缓.

[ Hou X Y, Wu T, Hou W, et al.Characteristics of coastline changes in mainland China since the early 1940s[J]. Science China Earth Sciences, 2016,46(8):1065-1077. ]

[6]
Wu T, Hou X, Xu X.Spatio-temporal characteristics of the mainland coastline utilization degree over the last 70 years in China[J]. Ocean & Coastal Management, 2014,98:150-157.Based on topographic maps and remote sensing imageries measured or captured at time instants varied from 1940s to 2012, mainland coastline in 1940s, 1960s, 1990, 2000, 2010 and 2012 in China were delineated and classified into eight types according to the differences in anthropogenic utilization. And the index of coastline utilization degree (ICUD) was defined and calculated for mainland coastline at national, provincial and local scales respectively. It turned out that, 1) over the last 70 years, especially during the last two decades in China, the ICUD increased continuously and dramatically, which shows that the impacts of human beings on mainland coastline increased incessantly. 2) Significant spatial patterns and temporal variations of the ICUD could be observed, in specific, the Yangtze River delta had much higher ICUD in the early stages; however the ICUD in the Pearl River delta and Circum Bohai Bay increased more dramatically than the Yangtze River delta in the last two decades. 3) At national and provincial scales, the intensive and accelerated exploitation of coastline, following the continual decrease of natural coastline over the last 70 years had determined the temporal trends of ICUD. However, the spatio-temporal patterns of ICUD exhibited much complicated characteristics at local scale because both human activities and physical factors had significant impacts on coastline changes. 4) Overall, the ICUD effectively revealed the spatio-temporal characteristics of mainland coastline changes and impacts of human activities on coastline in China. It will be helpful for China's ICZM decision makings to monitor the mainland coastline changes and analyze its dynamics by ICUD. (C) 2014 Elsevier Ltd. All rights reserved.

DOI

[7]
刘百桥,孟伟庆,赵建华,等.中国大陆1990-2013年海岸线资源开发利用特征变化[J].自然资源学报,2015,30(12):2033-2044.利用遥感和GIS技术对中国1990—2013年23 a间大陆海岸线的变化情况进行了分析,从海岸线空间资源可持续利用角度,构建了海岸线开发利用负荷度和易损度指标,对我国大陆海岸线资源开发利用特征进行了评估,结果显示:1)中国大陆海岸线的变化主要体现在海岸线长度和形态的变化两个方面,长度上,中国大陆海岸线呈现出持续增加的趋势,23 a间增加了1 045.54 km;形态方面,大量的自然岸线转变为平直的人工岸线,人工岸线增加了4 398.14 km,年均增加约200 km。2)大陆海岸线的开发利用负荷不断增加,我国距离大陆海岸线1 km范围内海域被开发利用的面积比例已超过80%;大陆海岸线重度开发岸线长度为3 118.05 km,占总长度的16.43%,其中,河北、天津、山东、江苏、上海和浙江的重度开发岸线长度所占比例均超过了50%;海南、福建和广西区的未开发岸线比例超过60%。3)低易损度海岸线分布存在南北差异,北方沿海地区,除山东外,其他省区的高易损度海岸线所占比例均超过了15%,南方地区海岸线资源的易损度整体较好。海南省、广西区的可开发利用潜力较大,人工岸线与易损度存在正相关。论文可为海岸线空间资源管理和可持续利用提供支持。

[ Liu B Q, Meng W Q, Zhao J H, et al.Variation of Coastline Resources Utilization in Chinafrom 1990 to 2013[J]. Journal of Natural Resources,2015,30(12):2033-2044. ]

[8]
Lathrop R G, Bognar J A.Applying GIS and landscape ecological principles to evaluate land conservation alternatives[J]. Landscape and Urban Planning, 1998,41(1):27-41.Nowhere in the eastern United States is the conflict between the conservation of the rich biological diversity of existing forested landscapes vs. a continued expansion of suburban/exurban development more evident than in the case of Sterling Forest, a 7245 ha tract of land on the New York ew Jersey border. This paper reports on our application of geographic information systems (GIS)-based assessment and landscape ecological principles to assess the environmental sensitivity of Sterling Forest lands and to prioritize lands for conservation protection. This GIS assessment served as the basis of subsequent negotiations of a compromise conservation-development plan by a coalition of land conservation trusts and the land owner/developer. Sterling Forest represents a useful case study of the application of GIS technology by the non-profit environmental groups in successfully undertaking an independent analysis of a regionally important land use issue.

DOI

[9]
Phua M H, Minowa M.A GIS-based multi-criteria decision making approach to forest conservation planning at a landscape scale: A case study inthe Kinabalu area, Sabah, Malaysia[J]. Landscape and Urban Planning, 2005,71(S2-S4):207-222.This paper presents a geographic information system (GIS)-based multi-criteria decision making approach for forest conservation planning at a landscape scale. This approach enables decision makers to evaluate the relative priorities of conserving forest areas based on a set of preferences, criteria and indicators for the area. Compromise programming techniques are used to integrate the forest conservation priority maps of decision groups where a separation distance is calculated. A clustering analysis was applied to identify potential conservation areas as the basis of delineating potential new protected areas. The study was conducted in the Kinabalu area, Sabah, Malaysia where two polygons neighboring the Kinabalu Park were delineated. A group of 11 polygons totaling 2050 ha has also been detected in the western part of Kinabalu Park. The study recommends the inclusion of a forest polygon (359 ha) neighboring Kinabalu Park and another (4361 ha) to the west of the park as new protected areas. A green corridor linking the potential new protected areas and Kinabalu Park should also be constructed to facilitate animal movement and interaction. This study reveals that riparian vegetation is an important aspect to forest conservation and the legislation to protect riparian zones should be strengthened.

DOI

[10]
Ezgi T, Asli S D G, Aylin C T. A case study in natural coastline of Eneze-Kesan districts by using natural threshold analysis[J]. Ocean and Costal Management, 2015, 118:129-138Study area takes place in coastal line of Enez–Kesan districts starting from Dalyan Lake region which was also legally declared as wetland conservation zone of Maritza basin. In this study, nearly 56km of coastal development in Enez – Kesan, located northern part of Saros Bay, is evaluated according to the ecological threshold analysis. Despite the ecological and socio-cultural importance of the region, transformation of the ecological quality is getting more noticeable. Mapping of Morphological structure are performed from General Directorate of Soil and Water surveys including Slope, Erosion and Land Use Capability Classification data. Furthermore, anthropogenic effects (industrial and residential zones etc.) and natural areas (forestry, wetlands etc.) are determined using SPOT 5 imagery acquired in 2006. The methodology involves covering the study area with grids and potential land evaluation charts. These charts are assessed by “Usage Value Analysis for Supporting Method of Planning” and obtain total usage value of the lands. Adverse effects on natural potential lands depending on current land use at the study zone appraised for strategic environmental assessment. Study is aimed to analyze development dynamics and natural thresholds affected by physical geography in coastal line of Enez – Kesan districts including also wetlands, natural areas. Study indicates proposals according to the landscape assessments. Additionally, legal tools applied on the study area are provided to pose the effects of legal impediments and to establish the question of law.

DOI

[11]
Li X, Damen MCJ.Coastline change detection with satellite remote sensing for environmental management of the Pearl River Estuary, China[J]. Journal of Marine Systems, 2010,82(SI):S54-S61.The Pearl River delta area in Guangdong Province has one of the highest economic development rates of China. Rapid industrialization and urbanization has resulted in extensive changes in land use, including the construction of harbours and embankments. The lack of sustainable coastal zone management has caused severe environmental problems, such as land subsidence, intrusion of sea water, siltation of river channels and coastal erosion. For the analysis of the changes of the coastlines, multi-temporal Landsat images and a SPOT scene have been used, in combination with topographical and nautical data. From the change analysis, it can be concluded that the largest variations in the position of the coastline over time occurred in the Nansha Development Zone, situated in the Northern part of Lingdingyang bay. Sedimentation and land reclamation was responsible for the growth of the islands in the period 1960 to 2000, which however decreased slightly in the years after. Various large changes occurred also in the East of the bay along the coast of Shekou peninsula, caused by extensive harbour construction and growth of polder systems. Based on the research of the coastline change in recent decades, suspended sediment plume distribution and its sedimentation, it is suggested that the western part of the waterway in the estuary may not be suitable for large number of construction for harbours, due to the sedimentation and fill up. One of the most important impacts of the coastline changes in the Pearl River Estuary is the narrowing down and extension of river channel which results in more floods in the upper part of the river.

DOI

[12]
Gens R.Remote sensing of coastlines: detection, extraction and monitoring[J]. International Journal of Remote Sensing, 2010,31(7):1819-1836.This paper reviews the current status of the use of remote sensing for the detection, extraction and monitoring of coastlines. The review takes the US system as an example. However, the issues at hand can be applied to any other part of the world. Visual interpretation of airborne remote sensing data is still widely and popularly used for coastal delineation. However, a variety of remote sensing data and techniques are available to detect, extract and monitor the coastline. The developed techniques have reached a level of maturity such that they are applied in operational settings.

DOI

[13]
Braga F, Tosi L, Prati C, et al.Shoreline detection: capability of COSMO-SkyMed andhigh-resolution multispectral images[J]. European Journal of Remote Sensing, 2013,46:837-853.This study aims to extract the instantaneous shoreline from remote sensing data acquired with very high resolution multispectral and SAR sensors. The capabilities of IKONOS, GeoEye and COSMO-SkyMed for shoreline detection are tested in the Venice littoral (Italy) by classifying the imagery into its land/water components. GPS measurements synchronously to the COSMO-SkyMed acquisitions are carried out along two transects at different tidal levels and used for validation of satellite derived shorelines. Finally, a collection of instantaneous coastlines at a specific tidal level is mapped for reconstructing the intertidal beach morphologic model.

DOI

[14]
Rahman A F, Dragoni D, El-Masri B.Response of the Sundarbans coastline to sea level rise and decreased sediment flow: A remote sensing assessment[J]. Remote Sensing of Environment, 2011,115:3121-3128.The Sundarbans is the world's largest remaining single block of mangrove forest, covering approximately 1 million ha (similar to 1,000 km(2)) of the Ganges-Brahmaputra delta along the coastal areas of India and Bangladesh. Sea level rise and alteration of water flows of the Himalayan headwaters are among the major disturbances threatening these coastal areas. But very few studies exist on the dynamics or current status of the Sundarbans coastline. We used Landsat images spanning from 1973 to 2010, and an algorithm that we developed, to consistently estimate the spatiotemporal dynamics of erosion and accretion for four different time intervals and the whole study period. Our results show that the direction and extent of erosion and accretion rates varied throughout the different periods. Erosion was the highest in the 1973-1979 interval, with 23.2 km(2) year(-1) of land loss. However, that rate substantially declined in the following periods, reaching a rate of 7-10 km(2) year(-1). Accretion showed a rate of 10 km(2) year(-1) between 1973 and 1989, but substantially declined to similar to 4 km(2) year(-1) between 1989 and 2010. Accretion rate has declined in the recent years but erosion rate has remained relatively high. As a result the delta front has undergone a net erosion of similar to 170 km(2) of coastal land in the 37 years of our study period. These numbers are significantly higher than the previously reported rates and magnitudes of erosion in this area. The methods and maps developed in this study may be helpful in management planning of this vulnerable coastline. (C) 2011 Elsevier Inc. All rights reserved.

DOI

[15]
Salghuna N N, Bharathvaj S A.Shoreline change analysis for northern part of the Coromandel coast[C]. International Conference on Water Resources, Coastal and Ocean Engineering, 2015,4:317-324.

[16]
Cui B L, Li X Y.Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976-2005)[J]. Geomorphology, 2011,127:32-40.The dramatic decreases in runoff and sediment have great impacts on erosion-deposition variation in the Yellow River estuary. This study extracted mean high tide lines of the Yellow River estuary from MSS, TM and ETM+ data from 1976 to 2005, and explored relationships between the accretion-erosion of land and the runoff and sediment load of the Yellow River. The results showed that the general pattern of accretion-erosion of the entire estuary was divided into four stages: rapid accretion stage (1976-1986), accretion-erosion adjustment stage (1986-1996), slow erosion stage (1996-2003), and slow accretion stage (2003-present). For maintaining the annual balance of the entire estuary (1976-2005) and Q8 estuary (most recent course of the Qingshuigou estuary from 1996 to 2005), critical annual runoff and sediment load are 140.36 x 10(8) m(3) year(-1) and 3.31 x 10(8) t year(-1), and 85.0 x 10(8) m(3) year(-1) and 1.63 x 10(8) t year(-1),respectively. In the future decades, the Q8 estuary is likely to maintain its shape and area balance or have a little accretion, but the entire estuary could be in an eroding state. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.

DOI

[17]
Chen L C and Rau J Y. Detection of shoreline changes for tideland area using multi-tempral satellite images[J]. Int. J. Remote Sensing, 1998,19(17):3383-3397.An original scheme to detect shoreline changes using multi-temporal satellite images and tidal measurements is presented here. First, the basic idea behind this investigation is to reconstruct a reference digital terrain model (DTM) for tideland areas from a set of SPOT satellite images sampled over a short period. Each image corresponds to a tidal measurement. Then, the shoreline, as interpreted from a historical satellite image, is compared with one traced from the reference DTM, according to the associated tidal elevations. Experimental results indicate that the area error of the test sand barriers ranges between 7.6% and 12.5%.

DOI

[18]
Di K C, Ma R J, Wang J, et al. 2004. Coastal mapping and change diction using high-resolution IKONOS satellite imagery[J]..

[19]
ElA HM. Short term coastal changes along Damietta-Port Said coastnortheast of the Nile Delta, Egypt[J]. Journal of Coastal Research, 2002,18(3):433-441.Landsat Thematic Mapper images (TM) covered the coastline between Damietta and Port Said, taken at intervals in 1984, 1987 and 1991, were used to detect shoreline changes. When combined with geomorphological and sedimentological data, the remote sensing data enable the classification of the coastline into five segments, based on whether erosional or depositional process domains dominate them. Although the 30m spatial resolution of the satellite TM data precludes precise calculation of rates of change, they do enable erosional and accretionary coastline segments of the Damietta Port Said coast to be recognised over these time scales. Segments 1 and 2 are erosional with an average shoreline recession of -41.4 m yr -1, and -19.3 m yr -1 respectively. Segment 3, Damietta spit, is an accretionary segment with an average shoreline advance of 81.4 m yr -1 Segment 4, El-Deiba, experienced erosion in the period 1984-1987, with an average shoreline recession of -17 m yr -1, but appears to have been stable over most of its length during the period 1987-1991, with observed declaration in the rate of shoreline recession to be -2.5 m yr -1 Segment 5, El-Gamiel, was stable during the period 1984-1987, but due to the construction of projecting jetties around the mouth of the inlet and the subsequent interruption of the sediment transport supply, the coastline became accretionary updrift of the inlet (west) and erosional downdrift (east). Granulometric and heavy mineral analyses show significant differences between beach face sediment samples collected from the different coastline segments. The erosional segments are characterised by coarser sands and high concentrations of heavy minerals; while the accretionary segments are composed of finer sands with lower concentrations of heavy minerals. Poor coastal management strategies and the shortage of data on geomorphological processes along the coast has resulted in constructions taking place along sections of erosional coastline, requiring subsequent expensive defence measures. Moreover, these results have implication for future development on onshore facilities after the recent discovery of oil and gas reserves offshore.

DOI

[20]
Stepanova O, Bruckmeier K.Resource use conflicts and urban-rural resource use dynamics in Swedish coastal landscapes: Comparisonand synthesis[J]. Journal of Environmental Policy and Planning, 2013,15(4):467-492.In European countries, the coasts are areas with high population density, intensive use of marine and terrestrial resources, and rapid urbanization. Coastal development creates conflicts and further ones are expected through climate change and sea level rise. In this article, the aim is knowledge synthesis for conflict research to support strategies for sustainable coastal zone management. For that purpose an interdisciplinary conceptual framework is elaborated and applied in exemplary conflict analyses. The framework combines knowledge from different fields of environmental and conflict research. In an analysis of 26 local, non-violent resource use conflicts in the Swedish metropolitan coastal areas of Gothenburg and Malmo, the themes of coastal landscape changes, resource management, and conflict analysis are connected in a governance perspective. The data were collected through qualitative, semi-structured interviews and discussions with local stakeholders and experts, document analysis and analysis of articles from local newspapers. The conflict analysis showed the multi-faceted and complex nature of the conflicts. Solutions require interdisciplinary research and knowledge synthesis. Our conclusions relate to the requirements of further development of knowledge integration and approaches to multi-scale environmental governance.

DOI

[21]
任玲. 中国沿海港口吞吐量增长变化与港口岸线集约利用研究[D].大连:辽宁师范大学,2013.

[ Ren L.Study on coastal ports through put development and port coastline intensive utilization of China[D]. Dalian: Liaoning Normal University, 2013. ]

[22]
张轶华. 临港工业区土地及岸线集约利用评价研究[D].北京:清华大学,2009.

[ Zhang Y H.Research on the evaluation of land-use and shoreline-use intensity for maritime industrial development areas[D]. Beijing: Tsinghua University, 2009. ]

[23]
刘家兴. 环珠江口城市群港口用地集约利用评价[D].广州:广州大学, 2011.

[ Liu J X.Evaluation on harbor intensive use of cities in the littoral area of PRE[D].Guangzhou: Guangzhou University, 2011. ]

[24]
Saaty T L.The analytic hierarchy process: planning, priority setting, resource allocation[M]. US: McGraw-Hill International Book Company, 1980.

[25]
Saaty T L, Vargas L G.Models, methods, concepts & applications of the analytic hierarchy process[J]. Springer US, 2001,7(2):159-172.Publisher&rsquo;s description: This is a volume dedicated to selected applications of the Analytic Hierarchy Process (AHP) focused on three themes: economics, the social sciences, and the linking of measurement with human values. (1) The AHP offers economists a substantially different approach to dealing with economic problems through ratio scales. The main mathematical models on which economics has based its quantitative thinking up to now are utility theory, which uses interval scales, and linear programming. We hope that the variety of examples included here can perhaps stimulate researchers in economics to try applying this new approach. (2) The second theme is concerned with the social sciences. The AHP offers psychologists and political scientists the methodology to quantify and derive measurements for intangibles. We hope that the examples included in this book will encourage them to examine the methods of AHP in terms of the problems they seek to solve. (3) The third theme is concerned with providing people in the physical and engineering sciences with a quantitative method to link hard measurement to human values. In such a process one needs to interpret what the measurements mean. A number is useless until someone understands what it means. It can have different meanings in different problems. Ten dollars are plenty to satisfy one&rsquo;s hunger but are useless by themselves in buying a new car. Such measurements are only indicators of the state of a system, but do not relate to the values of the human observers of that system. AHP methods can help resolve the conflicts between hard measurement data and human values.

DOI

[26]
Saaty T L.Decision making with the analytic hierarchy process[J]. International Journal of Services Sciences, 2008,1(1):83-98.Decisions involve many intangibles that need to be traded off. To do that, they have to be measured along side tangibles whose measurements must also be evaluated as to, how well, they serve the objectives of the decision maker. The Analytic Hierarchy Process (AHP) is a theory of measurement through pairwise comparisons and relies on the judgements of experts to derive priority scales. It is these scales that measure intangibles in relative terms. The comparisons are made using a scale of absolute judgements that represents, how much more, one element dominates another with respect to a given attribute. The judgements may be inconsistent, and how to measure inconsistency and improve the judgements, when possible to obtain better consistency is a concern of the AHP. The derived priority scales are synthesised by multiplying them by the priority of their parent nodes and adding for all such nodes. An illustration is included.. He is internationally recognised for his decision-making process, the Analytic Hierarchy Process (AHP) and its generalisation to network decisions, the Analytic Network Process (ANP). He won the Gold Medal from the International Society for Multicriteria Decision Making for his contributions to this field. His work is in decision making, planning, conflict resolution and in neural synthesis.

DOI

[27]
Mei X, Rosso R, Huang G L, et al.Application of analytical hierarchy processto water resources policy and management in Beijing, China[J]. Closing the Gapbetween Theory and Practice, 1989,180:73-83.

Outlines

/