Journal of Geo-information Science >
Parameters Optimization Method of Ecosystem Model Based on Bayesian Machine Learning
Received date: 2017-04-14
Request revised date: 2017-07-26
Online published: 2017-10-20
Copyright
Parameter optimization is an effective means for the accurate estimation of ecosystem model parameters and the reduction of the uncertainty in model predictions. We proposed a method for parameter optimization of the ecosystem model, which is based on the Bayesian machine learning and called No-U-Turn-Sampler (NUTS). As an efficient means of parameter optimization, NUTS uses a recursive algorithm to build a set of candidate points to obtain the posterior information of the parameters. If the constraint condition of “Non-U-Turn” is met, subtrees will be built to update parameters. Otherwise, “the optimal” set of parameters from current sample will be recorded, and then the next sampling begin to run until enough samples are taken. This algorithm avoids sampling redundancy caused by random walk and thus improves the efficiency of parameter optimization. Taking the carbon flux simulations of the Qianyanzhou subtropical coniferous plantation as an example, we implemented the parameter inversion of the carbon flux (Net Ecosystem Exchange, NEE) model using the NUTS method based on the Pymc3 framework. The comparison between the inversion results of NUTS and Metropolis-Hastings (MH) shows that the sampling frequency reduces about 85%, and the optimization efficiency increases about 3 times when the parameter values of the NUTS algorithm reaches convergence. The uncertainties of the seven parameters estimated by NUTS in the two NEE models are reduced by 10%-53% compared to MH. The NEE simulation improved significantly, with the R2 between the simulated values and the observed values increased by 23% and 17%, respectively and the RMSE decreased by 3% and 4%, respectively. In sum, the NUTS parameter optimization method proposed in this paper provides an efficient approach for the parameter optimization in ecosystem modeling.
Key words: NUTS; ecosystem model; parameter optimization; MCMC; Pymc3
HE Lijie , HE Honglin , REN Xiaoli , GE Rong , YANG Tao , ZHU Chao . Parameters Optimization Method of Ecosystem Model Based on Bayesian Machine Learning[J]. Journal of Geo-information Science, 2017 , 19(10) : 1270 -1278 . DOI: 10.3724/SP.J.1047.2017.01270
Fig.1 The process of updating a likely candidate sets during sampling图1 一次取样中参数集更新的过程 |
Fig. 2 Flow chart of NUTS parameter optimization method图2 NUTS参数优化方法流程图 |
Fig. 3 Flow chart of NUTS parameter optimization process图3 参数优化过程流程图 |
Fig. 4 Parameter posterior distribution of the model LM图4 LM模型的参数后验分布 |
Fig. 5 Parameter posterior distribution of the model QM图5 QM模型的参数后验分布 |
Fig. 6 Parameters trajectory of the NUTS algorithm图6 NUTS算法优化的参数轨迹 |
Fig. 7 Parameter trajectory of the Metropolis-Hastings algorithm图7 MH算法优化的参数轨迹 |
Fig. 8 Comparison of RMSE of half-hourly modeled NEE from the two models and observed NEE at QYZ under different algorithms图8 不同算法的NEE模拟值与实测RMSE逐年对比图 |
Tab.1 Parameter uncertainty analysis表1 参数不确定性分析 |
参数 | 先验值 | LM模型后验值 | QM模型后验值 | |||
---|---|---|---|---|---|---|
本文算法 | 文献[19]算法 | 本文算法 | 文献[19]算法 | |||
BR | [0.25,10] | 1.65±0.02 | 1.67±0.04 | 1.84±0.03 | 1.84±0.05 | |
Q10 | [1,3.5] | 2.11±0.02 | 2.1±0.04 | |||
a | [1,10] | 2.24±0.02 | 2.22±0.03 | |||
b | [-10,10] | -1.95±0.09 | -1.96 ± 0.11 | |||
Amax | [5,50] | 31.5±0.20 | 31.0±0.37 | 31.6±0.27 | 29.13±0.30 | |
LUE | [0.001,0.1] | 0.061±0.00 | 0.061±0.00 | 0.060±0.00 | 0.060±0.00 |
Tab. 2 R2 and RMSE comparison of different parameters optimization algorithms表2 不同参数优化算法的R2和RMSE对比情况 |
判断指标 | LM模型 | QM模型 | |||
---|---|---|---|---|---|
本文NUTS算法 | 文献[19]MH算法 | 本文NUTS算法 | 文献[19]MH算法 | ||
R2 | 0.80 | 0.65 | 0.81 | 0.69 | |
RMSE/(umol/m2) | 3.47 | 3.57 | 3.35 | 3.50 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
[
|
[6] |
[
|
[7] |
|
[8] |
[
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
[
|
[17] |
[
|
[18] |
[
|
[19] |
[
|
[20] |
|
[21] |
[
|
[22] |
|
[23] |
|
[24] |
|
[25] |
[
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
[
|
[31] |
[ Li C, He H L, Liu M, et al. CO2 flux data processing system of ChinaFLUX and its application[J]. Journal of Geo-information Science, 2008,10(5): 557-565. ]
|
[32] |
|
[33] |
|
[34] |
[
|
[35] |
|
[36] |
|
/
〈 | 〉 |