Journal of Geo-information Science >
A Comparative Study of Different Red Edge Indices for Remote Sensing Detection of Urban Grassland Health Status
Received date: 2017-05-24
Request revised date: 2017-08-04
Online published: 2017-10-20
Copyright
Being an important part of the green space system, urban grassland has played a significant role in landscaping environment, regulating microclimate and preventing soil from erosion. Therefore, it is of great importance to monitor the health status of urban grassland timely and efficiently. Remote sensing technique has been widely used for assessing vegetation growth status for decades. Numerous studies have found that red edge indices are closely related to the important biochemical parameters of green plants. Thus, they can be regarded as important indicators for monitoring health status of vegetation. However, there is no explicit conclusion about which index is more suitable for monitoring the health status of urban grasslands among the existing red edge indices. The European Sentinel-2A satellite was successfully launched in late June 2015, aiming to replace and improve the old generation of satellite sensors of high resolution (i.e. Landsat and SPOT), with improved spectral capabilities. The multispectral instrument (MSI) of Sentinel-2 has made available a set of 13 spectral bands ranging from visible (VIS) and near infrared (NIR) to shortwave infrared (SWIR), featuring four bands at 10 m, six bands at 20 m, and three bands at 60 m of spatial resolution. In comparison to the previous sensors, Sentinel-2 incorporates three new spectral bands in the red-edge region centered at 705, 740 and 783 nm, providing an opportunity for assessing red-edge spectral indices for monitoring the health status of urban grasslands. For this reason, the main objective of this paper is to find a red edge index that is more suitable for evaluating the growth status of urban grassland based on Sentinel-2A sensor data. Taking the urban grasslands in Fuzhou and Xiamen cities, Southeastern China, as examples, we firstly investigated the spectral responsive characteristics of grasslands in different health status using Sentinel-2A images dated on June 23, 2016 and August 22, 2016, respectively for Fuzhou and Xiamen. On this basis, six red edge indices related to grassland chlorophyll content were then selected to test their efficiency in detecting grassland health status. These are the red edge position (REP), the terrestrial chlorophyll index (MTCI), the normalized difference red edge index (NDRE1), the novel inverted red-edge chlorophyll index (IRECI), the red-edge chlorophyll index (CIred-edge) and the modified chlorophyll absorption ratio index (MCARI2). Furthermore, independent sample T test and Euclidean distance methods were employed to evaluate the performance of the selected indices in the detection of grassland health status. Results showed that the six red edge indices had different performances. They have different degrees of sensitivity to the changes of grassland health status. In general, the IRECI was the most sensitive to the grassland health status among the six indices in the two study areas. The index can reveal significant differences in the numerical range and mean values between grasslands with different health status. The overall accuracy of the index is greater than 85% with a kappa coefficient exceeding 0.8 both in Fuzhou and Xiamen cases. The NDRE1 and MCARI2 indices ranked the second and third, while the other three indices were unable to effectively detect the health status of the grasslands. Accordingly, the IRECI is the optimal red edge index for evaluating the grassland health status using Sentinel-2A imagery.
Key words: remote sensing; Sentinel-2A; red-edge bands; red edge index; grassland health
FANG Canying , WANG lin , XU Hanqiu . A Comparative Study of Different Red Edge Indices for Remote Sensing Detection of Urban Grassland Health Status[J]. Journal of Geo-information Science, 2017 , 19(10) : 1382 -1392 . DOI: 10.3724/SP.J.1047.2017.01382
Fig. 1 Sentinel-2A images of Fuzhou and Xiamen (Red dots are the sample locations)图1 福州市和厦门市Sentinel-2A影像(红点为草地样区) |
Tab. 1 The main parameters of multi-spectral bands of Sentinel-2A表1 Sentinel-2A影像多光谱波段主要参数信息 |
波段号 | 波段 | 中心波长/nm | 波段宽度/nm | 空间分辨率/m |
---|---|---|---|---|
1 | Coastal | 443 | 20 | 60 |
2 | Blue | 490 | 65 | 10 |
3 | Green | 560 | 35 | 10 |
4 | Red | 665 | 30 | 10 |
5 | Red edge | 705 | 15 | 20 |
6 | 740 | 15 | 20 | |
7 | 783 | 20 | 20 | |
8 | NIR-1 | 842 | 115 | 10 |
8b | NIR-2 | 865 | 20 | 20 |
9 | Water vapor | 945 | 20 | 60 |
10 | Cirrus | 1375 | 30 | 60 |
11 | MIR-1 | 1610 | 90 | 20 |
12 | MIR-2 | 2190 | 180 | 20 |
Fig. 2 Grasslands in different health status图2 不同健康等级的草地 |
Fig. 3 Spectral signatures of grasslands in different health status图3 不同健康等级草地的光谱曲线 |
Tab. 2 Red edge indices and their calculation formulas表2 红边指数及其计算公式 |
指数 | 计算公式 | 对应的Sentinel-2A波段 | 描述 | 参考文献 |
---|---|---|---|---|
REP | REP=705+35×(0.5×(ρ665+ ρ783)-ρ705)/(ρ740-ρ705) | B4、B7、B5、B6 | 红边范围内植被反射光谱曲线斜率最大的位置。当植物叶片的叶绿素含量增加时,REP向长波方向移动,反之则向短波方向移动[25] | Guyot等[25] |
MTCI | MTCI = (ρ753.75-ρ708.75)/(ρ708.75-ρ681.25) | B6、B5、B4 | 对植物叶片叶绿素含量较为敏感,其值越大代表叶绿素含量越高[12] | Dash等[12] |
NDRE1 | NDRE1= (ρ750-ρ705)/(ρ750+ρ705) | B6、B5 | NDRE1是用红边的峰和谷来代替传统NDVI中的红光和近红外波段,可用于估算植物叶面积指数和叶绿素含量[13] | Gitelson等[27] |
IRECI | IRECI = (ρ783-ρ665)/(ρ705/ρ740) | B7、B4、B5、B6 | 该指数与植物冠层叶绿素含量和叶面积指数具有很好的相关关系,可定量表征植物的叶绿素含量[26] | Frampton等[26] |
CIred-edge | CI red-edge= (ρ750-800/ρ690-725)-1 | B7、B5 | 该指数与植物叶绿素,氮素含量具有显著的线性关系[27-28] | Gitelson等[27-28] |
MCARI2 | MCARI 2= ((ρ750-ρ705)-0.2× (ρ750-ρ550)) ×(ρ750/ρ705) | B6、B5、B3 | 该指数对植物中的叶绿素含量较为敏感,其值越大表示叶绿素含量越高[14] | Wu等[14] |
Tab. 3 p-values of independent-sample T test of red edge indices in different health status表3 不同健康等级下红边指数的p值 |
p值 | REP | MTCI | NDRE1 | IRECI | CIred-edge | MCARI2 | |
---|---|---|---|---|---|---|---|
福州市 | 好-中 | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** |
好-差 | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** | |
中-差 | 0.174 | 0.011* | 0.000** | 0.000** | 0.013* | 0.000** | |
厦门市 | 好-中 | 0.001** | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** |
好-差 | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** | |
中-差 | 0.012* | 0.016* | 0.000** | 0.000** | 0.000** | 0.000** |
注:**代表通过1%显著性检验;*代表通过5%显著性检验 |
Fig. 4 The data range (mean±1 standard deviation) of red edge indices in different health status of grasslands图4 不同健康等级草地的红边指数值域区间(均值±1标准差) |
Tab. 4 The statistics table of Euclidean distance表4 欧式距离统计 |
红边指数 | 好-中 | 排序 | 中-差 | 排序 | 好-差 | 排序 | 总欧式距离 | 综合排序 | |
---|---|---|---|---|---|---|---|---|---|
福州市 | IRECI | 2.97 | 1 | 2.11 | 1 | 4.49 | 1 | 9.57 | 1 |
NDRE1 | 2.43 | 3 | 2.01 | 2 | 4.37 | 2 | 8.81 | 2 | |
MCARI2 | 2.46 | 2 | 1.91 | 3 | 3.67 | 3 | 8.04 | 3 | |
CIred-edge | 1.13 | 5 | 0.33 | 4 | 1.47 | 4 | 2.93 | 4 | |
MTCI | 1.23 | 4 | 0.29 | 5 | 1.26 | 5 | 2.78 | 5 | |
REP | 1.12 | 6 | 0.18 | 6 | 1.07 | 6 | 2.37 | 6 | |
厦门市 | IRECI | 1.49 | 1 | 1.93 | 1 | 2.71 | 2 | 6.13 | 1 |
MCARI2 | 1.35 | 2 | 1.45 | 2 | 2.64 | 3 | 5.44 | 2 | |
NDRE1 | 1.32 | 3 | 1.29 | 3 | 2.81 | 1 | 5.42 | 3 | |
CIred-edge | 1.29 | 4 | 1.29 | 4 | 2.32 | 4 | 5.00 | 4 | |
REP | 0.88 | 5 | 0.27 | 5 | 1.06 | 5 | 2.21 | 5 | |
MTCI | 0.82 | 6 | 0.26 | 6 | 1.01 | 6 | 2.09 | 6 |
Fig. 5 Sentinel-2A images of golf courses in Fuzhou and Xiamen and their corresponding images of red edge indices图5 福州市和厦门市高尔夫球场的遥感影像及其红边指数影像 |
Tab. 5 Accuracy validation of the health grade of grasslands表5 草地健康等级判别精度验证 |
指数类型 | 福州市 | 厦门市 | |||
---|---|---|---|---|---|
总精度/% | Kappa系数 | 总精度/% | Kappa系数 | ||
REP | 62.12 | 0.4311 | 67.83 | 0.5195 | |
MTCI | 69.70 | 0.5480 | 63.16 | 0.4478 | |
NDRE1 | 87.37 | 0.8103 | 83.62 | 0.7647 | |
IRECI | 91.41 | 0.8909 | 89.47 | 0.8419 | |
CIred-edge | 74.24 | 0.6167 | 83.04 | 0.7457 | |
MCARI2 | 85.86 | 0.7876 | 84.79 | 0.7716 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
[
|
[4] |
[
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
[
|
[11] |
[
|
[12] |
|
[13] |
|
[14] |
|
[15] |
[
|
[16] |
|
[17] |
|
[18] |
[
|
[19] |
ESA. Sentinel-2 User Handbook [EB/OL]. (2015-07-24) [2017-04-08].
|
[20] |
ESA. Sentinel-2 MSI - Level-2A Prototype Processor Installation and User Manual [EB/OL]. (2016-04-13) [2017-04-08]. .
|
[21] |
ESA. Sentinel-2 technical guides [EB/OL].[2017-04-08]. https://sentinels.copernicus.eu/web/sentinel/technical-guid-es/sentinel-2-msi.
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
[
|
[30] |
|
[31] |
Clevers J G P W,
|
[32] |
|
[33] |
|
/
〈 | 〉 |