Journal of Geo-information Science >
Simulation of Potential Evapotranspiration in Heihe River Basin Based on HASM
Received date: 2017-02-16
Request revised date: 2017-07-13
Online published: 2017-11-10
Copyright
Potential Evapotranspiration (PET) is one of the important factors in the study of evapotranspiration (ET) and local water resources. Accurate PET dataset is crucial for improving our understanding of basin-scale hydrology, agriculture and earth sciences. In this study, ET data measured at 12 stations during the period of 2000-2009 were used to simulate the PET in Heihe River Basin by using a new surface modeling method, so called High Accuracy and high Speed Method (HASM), which has been successfully used in the construction of Digital Elevation Model (DEM) and the studies of ecosystem changes. The relationship between PET and climatically/topographical variables was explored, and a polynomial regression model for PET was developed. The stepwise regression method was used to find an optimal subset of influence factors for PET. Finally, polynomial regression and residual interpolation using HASM were employed to develop a gridded ET dataset for Heihe River Basin. The simulation results of our method were compared with other potential evapotranspiration datasets including the "Simulated forcing dataset of 3km/6 hour in 1980-2010 in Heihe River Basin" and the interpolation results by using Kriging, IDW and Spline. Results showed that HASM exhibited good performance in ET simulation. Accuracy tests revealed that HASM was superior to other datasets. Therefore, HASM can be considered as an alternative and accurate method for PET interpolation in Heihe River Basin. As the basic geographical data, PET produced by HASM can be used for other applications.
Key words: HASM; PET; interpolation; Heihe River Basin
LI Han , ZHAO Na , YUE Tianxiang , SHEN Wei , LIU Yu . Simulation of Potential Evapotranspiration in Heihe River Basin Based on HASM[J]. Journal of Geo-information Science, 2017 , 19(11) : 1466 -1474 . DOI: 10.3724/SP.J.1047.2017.01466
Fig. 1 Location of meteorological stations in Heihe River Basin图 1 黑河流域气象观测站点分布图 |
Tab. 1 Average ET data of Heihe River Basin from 2000 to 2009表1 黑河流域2000-2009年月平均蒸发数据表 |
月份 | CV/% | 空间平稳性 | 趋势面 | 回归关系 | R2 | Adjust R2 |
---|---|---|---|---|---|---|
1 | 0.0601 | 平稳 | OLS | Eva=85.891893+0.000038×X-0.000011×Y+1.42571× Slope +3.74786×Wind-2.191041×Tem | 0.7943 | 0.5476 |
2 | 0.8197 | 平稳 | OLS | Eva=442.704724+0.000054×X+0.000124×Y+0.020376× DEM-5.210942×Slope | 0.6439 | 0.5188 |
3 | 0.0452 | 平稳 | OLS | Eva=809.960102+0.000007×X+0.000216×Y+0.070939× DEM-23.591797×Slope+0.032568×Aspect-10.638409×Pre | 0.9428 | 0.8741 |
4 | 0.2556 | 平稳 | OLS | Eva=2021.251854+0.0001×X+0.000529×Y+0.119819× DEM-1.484043×Focalst-2.130829×Wind-7.674418×Pre | 0.9472 | 0.8839 |
5 | 1.3382 | 平稳 | OLS | Eva=1965.742178+0.000538×X+0.000647×Y+0.052113× DEM+5.869211×Slope-37.088237×Wind-2.967979×Humidity | 0.8733 | 0.7678 |
6 | 0.0711 | 平稳 | OLS | Eva=3495.605701+0.00055×X+0.000982×Y+0.070291× DEM-4.273307×Slope-47.9458×Wind | 0.8390 | 0.7049 |
7 | 0.0702 | 平稳 | OLS | Eva=2205.70824+0.000507×X+0.000702×Y+0.043407×DEM+ 5.458829×Slope-2.241815×Humidity- 41.872033×Wind | 0.9491 | 0.8879 |
8 | 0.1780 | 平稳 | OLS | Eva=1531.148667+0.000398×X+0.000512×Y+0.037061×DEM+ 3.266468×Slope-2.055309×Humidity-35.054072×Wind | 0.9092 | 0.8003 |
9 | 0.0313 | 平稳 | OLS | Eva=813.651958+0.000173×X+0.000285×Y+8.544999× Slope+1.791287×Humidity-23.872159×Wind+0.682247×Pre | 0.9071 | 0.7958 |
10 | 19.2299 | 平稳 | OLS | Eva=2895.536798+0.000473×X+0.000763×Y+0.154767×DEM- 1.353498×Focalst+1.257364× Humidity-12.786523×Wind- 10.088294×Pre | 0.7445 | 0.5579 |
11 | 0.0289 | 平稳 | OLS | Eva=6.559405+0.000082×X+0.00004×Y+0.041354× Aspect-0.827806×Humidity+7.86809×Wind | 0.8307 | 0.6897 |
12 | 0.0246 | 平稳 | OLS | Eva=-61.675279+0.00007×X+0.00003×Y+2.144228× Slope+0.053166×Humidity-3.872257×Tem | 0.8623 | 0.6971 |
注:X代表经度;Y代表纬度;DEM代表高程;Slope代表坡度;Aspect代表坡向;Wind代表风速;Tem代表温度;Pre代表降水;Humidity代表湿度 |
Tab. 2 HASM error analysis (mm)表2 HASM误差分析(mm) |
马鬃山 | 玉门镇 | 鼎新 | 金塔 | 酒泉 | 高台 | 临泽 | 肃南 | 张掖 | 民乐 | 山丹 | 永昌 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | 55.18 | 47.57 | 44.74 | 18.36 | 23.80 | 19.54 | 69.50 | 52.77 | 27.01 | 47.40 | 23.09 | 49.95 |
MAE | 43.94 | 30.17 | 36.11 | 15.58 | 17.79 | 17.17 | 47.72 | 35.95 | 17.95 | 42.64 | 17.43 | 39.92 |
MRE | 0.25 | 0.19 | 0.20 | 0.12 | 0.15 | 0.17 | 0.23 | 0.21 | 0.13 | 0.34 | 0.13 | 0.31 |
Tab. 3 Error analysis of the meteorological forcing data (mm)表3 气象强迫数据误差分析(mm) |
马鬃山 | 玉门镇 | 鼎新 | 金塔 | 酒泉 | 高台 | 临泽 | 肃南 | 张掖 | 民乐 | 山丹 | 永昌 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | 148.82 | 95.39 | 153.42 | 95.21 | 91.8 | 88.67 | 444.77 | 124.31 | 195.44 | 208.60 | 157.83 | 189.31 |
MAE | 130.10 | 73.94 | 115.09 | 80.89 | 63.5 | 64.27 | 329.89 | 75.06 | 115.94 | 145.05 | 105.05 | 130.08 |
MRE | 0.72 | 0.55 | 0.79 | 0.63 | 0.61 | 0.62 | 1.97 | 0.55 | 1.01 | 0.89 | 0.70 | 1.01 |
Tab. 4 Kriging error analysis (mm)表4 Kriging误差分析(mm) |
马鬃山 | 玉门镇 | 鼎新 | 金塔 | 酒泉 | 高台 | 临泽 | 肃南 | 张掖 | 民乐 | 山丹 | 永昌 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | 64.12 | 30.32 | 47.11 | 26.69 | 35.34 | 19.08 | 66.72 | 20.35 | 29.84 | 47.60 | 26.97 | 56.71 |
MAE | 47.68 | 24.24 | 37.75 | 19.30 | 28.17 | 17.98 | 47.64 | 17.21 | 21.74 | 41.67 | 22.24 | 41.64 |
MRE | 0.29 | 0.11 | 0.20 | 0.14 | 0.16 | 0.16 | 0.24 | 0.12 | 0.12 | 0.28 | 0.13 | 0.27 |
Tab. 5 IDW error analysis (mm)表5 IDW误差分析(mm) |
code | 马鬃山 | 玉门镇 | 鼎新 | 金塔 | 酒泉 | 高台 | 临泽 | 肃南 | 张掖 | 民乐 | 山丹 | 永昌 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | 55.60 | 16.26 | 52.14 | 31.68 | 29.40 | 34.45 | 70.08 | 30.42 | 48.79 | 46.78 | 24.71 | 41.46 |
MAE | 44.57 | 12.81 | 40.25 | 27.32 | 24.02 | 27.97 | 48.75 | 20.16 | 32.94 | 40.91 | 19.61 | 38.54 |
MRE | 0.27 | 0.08 | 0.22 | 0.16 | 0.14 | 0.17 | 0.24 | 0.13 | 0.16 | 0.27 | 0.12 | 0.24 |
Tab. 6 Spline error analysis (mm)表6 Spline数据误差分析(mm) |
马鬃山 | 玉门镇 | 鼎新 | 金塔 | 酒泉 | 高台 | 临泽 | 肃南 | 张掖 | 民乐 | 山丹 | 永昌 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | 187.85 | 56.81 | 243.10 | 30.57 | 269.90 | 121.20 | 84.30 | 86.38 | 90.93 | 122.50 | 96.59 | 244.60 |
MAE | 139.95 | 43.95 | 86.17 | 24.53 | 96.73 | 86.29 | 58.65 | 50.93 | 61.96 | 79.15 | 68.11 | 155.50 |
MRE | 0.86 | 0.23 | 0.52 | 0.14 | 0.57 | 0.43 | 0.29 | 0.35 | 0.31 | 0.39 | 0.35 | 0.76 |
Fig. 2 Comparison of monthly average ET data of Ma Zongshan, Yu Menzhen, Jiu Quan and Zhang Ye station图2 6种数据对照图 |
Fig. 3 PET simulation of Heihe River Basin in January图3 1月黑河潜在蒸发量模拟 |
Fig. 4 PET simulation of Heihe River Basin in July图4 7月黑河潜在蒸发量模拟 |
Tab. 7 Comparison of the monthly PET results from the six methods (mm)表7 6种数据结果统计(mm) |
月份 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
站点值 | 38.1 | 68.2 | 147.8 | 252.4 | 205.3 | 217.5 | 214.9 | 190.6 | 132.6 | 149.5 | 73.6 | 39.4 |
HASM | 43.6 | 68.3 | 169.9 | 262.5 | 223.2 | 208.9 | 225.7 | 218.6 | 153 | 154.3 | 79.3 | 40.3 |
气象强迫数据 | 36.6 | 22.4 | 93.5 | 79.2 | 244.9 | 125.8 | 323.6 | 146 | 126.3 | 54.8 | 19.8 | 9.59 |
Kriging | 45.6 | 67.3 | 175.9 | 247.4 | 220.6 | 202.8 | 229.1 | 227.7 | 161.1 | 157.7 | 84 | 49.6 |
IDW | 44.8 | 70.4 | 167.9 | 274.3 | 225.8 | 215.2 | 236.4 | 219.5 | 155.9 | 159.9 | 79.5 | 49.9 |
Spline | 44.1 | 83.4 | 153.8 | 362.2 | 394.0 | 319.5 | 368.3 | 249.3 | 271.5 | 208.2 | 105.7 | 29.4 |
注:第2列为气象站点观测数据的各月平均值;第3至7列分别为HASM、气象强迫数据、Kriging、IDW、Spline插值在流域内的各月潜在蒸发值 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
[
|
[4] |
[
|
[5] |
[
|
[6] |
|
[7] |
[
|
[8] |
[
|
[9] |
[
|
[10] |
[
|
[11] |
[
|
[12] |
[
|
[13] |
[
|
[14] |
|
[15] |
[
|
[16] |
[
|
[17] |
[
|
[18] |
[
|
[19] |
[
|
[20] |
|
[21] |
[
|
[22] |
[
|
[23] |
[
|
/
〈 | 〉 |