Rainfall Threshold for Flash Flood Early Warning Based on Flood Peak Modulus

  • LI Qing , * ,
  • WANG Yali ,
  • LI Haichen ,
  • ZHANG Miao ,
  • LI Changzhi ,
  • CHEN Xing
Expand
  • 1. China Institute of Water Resources and Hydropower Research, Beijing 100038, China
  • 2. Research Center on Flood and Drought Disaster Reduction of the Ministry of Water Resources, Beijing 100038, China
*Corresponding author: LI Qing, E-mail:

Received date: 2017-07-12

  Request revised date: 2017-08-25

  Online published: 2017-12-25

Copyright

《地球信息科学学报》编辑部 所有

Abstract

Flash flood early warning is an important non-structural measure for flash flood prevention in China. Also, rainfall threshold is the key for flash flood early warning. At present, the method of calculating rainfall thresholds need a large amount of meteorological and hydrological data. Meanwhile, building the hydrological model and calibrating parameters are difficult, which are not suitable for the flood control personnel. A simple and easy method, using flood peak modulus to calculate rainfall threshold, was proposed in this study based on national flash flood investigation and evaluation results. Rational equation is the basis of the calculation method. The flood peak modulus in rational equation is expressed as a ratio of the flow to watershed area. Then, the critical rainfall formula is obtained. Using the Manning formula and national investigation and evaluation results, the flood peak modulus on the condition of critical flow is obtained, and the net rainfall is calculated. Based on the research results of the scholars, three aspects about the rainfall loss calculation are considered. They are depression storage, vegetation interception and soil infiltration. The sum of the net rainfall and the rainfall loss is the critical rainfall. Considering the factors such as soil water content of watershed, the rainfall threshold was finally obtained. In order to demonstrate this method, Shuanghe catchment in Suijiang County of Yunnan Province was chosen as the study area, of which the area is 89.12 km2. The calculated concentration time was 5.2 h. Thus, the duration was estimated to be 1 h, 3 h, and 6 h. The results indicated there was a linear correlation between the net rain amount and different rainfall durations. Depression storage and canopy interception was invariant during different rainfall durations, but the infiltration was variable. For 1 h duration, initial infiltration was the main factor to consider; for 3 h, both initial infiltration and mid-term infiltration were considered; and for 6 h, steady infiltration also needed consideration besides the initial and medium-term infiltration. The calculated critical rainfall for 1 h, 3 h, and 6 h were 38.6 mm, 64.8 mm, and 96.9 mm, respectively. Rainfall thresholds of different durations for flash flood early warning were estimated on basis of critical rainfall considering three different soil moisture conditions. Under dry soil moisture condition, large rainfall loss leads to a large rainfall threshold; under wet soil moisture condition, contrary to the dry condition, small rainfall threshold is caused by small rainfall loss; and under medium soil moisture condition, the rainfall threshold was in medium. The rationality analysis on critical runoff, rainfall losses, and rainfall threshold was carried out in the end of this study. The results showed the calculated rainfall threshold by flood peak modulus method was approximated to the rainfall threshold obtained from national flash flood investigation and evaluation project. Also, they are in accord with the observed rainfall during flash flood events. Thus, the calculated results are reasonable in this study. This study provided a quick and convenient way of calculating rainfall threshold of flash flood warning for the grass root staffs and offered technical support for estimating rainfall threshold correctly.

Cite this article

LI Qing , WANG Yali , LI Haichen , ZHANG Miao , LI Changzhi , CHEN Xing . Rainfall Threshold for Flash Flood Early Warning Based on Flood Peak Modulus[J]. Journal of Geo-information Science, 2017 , 19(12) : 1643 -1652 . DOI: 10.3724/SP.J.1047.2017.01643

1 引言

山洪是山丘区小流域由强降雨引起的突发性洪水[1-2]。近些年,山洪灾害已经成为世界各类自然灾害中的一个主要灾种,每年因山洪灾害所造成的人员伤亡和社会经济损失占各类自然灾害的比例持续上升,引起各国政府和世界组织及山丘区居民的普遍关注,部分国家已将防御山洪上升为国家战略[3]。小流域山洪灾害预警是防御山洪的关键环节和技术难点,而利用雨量预警指标进行山洪灾害预警是中国目前采用的主要方法[4]。当气象预报或实测降雨数据达到或超过雨量预警指标时,通过发布预警信息,安全转移危险区群众,可以有效地减少人员伤亡和财产损失。
国内外国学者开展了大量山洪灾害预警指标研究。在欧美国家和地区中,美国的预警指标Flash Flood Guidance(FFG)最具代表性,该方法基于临界流量,同时考虑土层含水量变化,利用分布式水文模型计算预警指标[5-8]。日本山洪灾害预警指标通过建立降雨强度与有效累积雨量之间的线性关系来确定[9]。中国早期采用的均为半经验方法[10],2013年至今,通过开展全国山洪灾害防治项目调查评价工作[11],极大程度上推进了中国山洪灾害预警指标的研究。但是上述方法对水文气象资料条件以及模型建模率定都有很高的要求,适用于高层次专业人员及研究人员,而对于县、乡、村一级的基层防汛人员并不适用。
2010年至今,通过开展全国山洪灾害防治项目建设,在乡(镇)、村级布设了大量简易雨量报警设备,确定这些设备的雨量预警指标阈值是成功预警的关键。基层人员若能根据当地实际情况及时修改、调整雨量预警指标,可以有效地提高预警的精准度,充分发挥防灾减灾的效益。因此,本文旨在提出一种简便、易用的雨量预警指标计算方法,该方法要求资料和数据较少,技术要求简便易行,基层人员可基于当地暴雨图集、水文手册以及山洪灾害调查评价成果,同时考虑当地降雨条件、地形地貌等基本情况,通过简要计算,即可分析估算当地雨量预警指标及阈值。该方法的提出不仅可以满足基层防汛人员的需要,同时也可用于专业人员快速、粗略计算雨量预警指标,为预警发布及人员转移赢取宝贵的时间。

2 研究区概况及数据源

2.1 研究区概况

双河流域位于云南省昭通市绥江县,板栗乡双河村双河1组为预警对象,该村位于大汶溪铜厂沟,如图1所示。该流域以壤土、砂壤土、粘壤土以及壤粘土为主,绝大部分流域坡度在30°左右,土地利用以林地为主,耕地较少。两岸为山坡地,有房屋及住户,无防护河堤,属山区性河流,在强降雨作用下,成灾快,破坏性强,极易发生严重的山洪灾害,造成人员伤亡及财产损失。村落附近河道以卵石为主,两岸植被较好。
Fig. 1 The study area

图1 研究区图

2.2 数据源

研究区基础地理信息数据采用国家基础信息地理中心1:5万、1:25万数字线划数据,主要包含行政边界、水系、道路、地名注记等地理要素。小流域基础信息数据、土地利用及植被信息、土壤质地、小流域地形坡度等数据均采用全国山洪灾害防治项目基础底图数据。水文资料来源于《云南省暴雨洪水查算实用手册》,小流域暴雨特性、沿河村落及城集镇等保护对象控制断面、成灾水位、河道及河岸糙率等,来源于云南省山洪灾害调查评价成果。

3 基于洪峰模数的雨量预警指标计算方法

快速计算山洪灾害雨量预警指标的2个先决条件是方法易操作和数据易获取。广泛应用于小流域设计暴雨洪水计算的推理公式,结构简单、计算便利,为雨量预警指标计算提供了思路和方法;通过开展全国山洪灾害调查评价工作,积累了全国山丘区小流域基础数据、植被土壤、沿河村落成灾水位等详细的基础资料,为雨量预警指标计算提供了的数据支撑。

3.1 基本原理

推理公式[12-13]属于集总式概念性模型,是无资料地区小流域设计山洪计算的一种常用方法[14],虽然在小流域暴雨洪水计算中易于使用,但也因其“过于简单粗略”的概化,难以适应复杂多变的实时水情状况,故很少用于常规洪水预报。然而,山洪预警与洪水预报思路不同,前者以洪水反求暴雨,且无暴雨过程和明确的预见期要求,因而结构简单的推理公式有其应用的可行性。针对山洪雨量预警实用需求,舍去部分汇流中对流域面积分配曲线的矩形概化,结合等流时方法,推演得出各典型时段临界雨量计算式,可供现行山洪预警雨量分析中使用。
洪峰模数是流域内单位面积产生的洪峰流量,表示流域产洪的能力,与流域的高程、坡降有密切的关系。因此,可以将推理公式中流量与流域面积的比值用洪峰模数表示,通过减少公式中参数的个数进一步简化雨量预警指标计算公式。
推理公式假定在造峰历时内,流域损失强度、净雨强度在时间和空间都是均匀条件下,流域上的平均产流强度与一定面积的乘积即为出口断面的流量。当产流时间 t c τ 时,称为全面汇流,计算时段取全流域汇流时间,可推出式(1)。
Q m = 0.278 h τ τ F (1)
式中: h τ τ 历时所对应的最大净雨量/mm; F 为流域面积/km2;Qm为流量/(m3/s)。
当产流时间 t c < τ 时,称为部分汇流,计算时段取产流时间,推出式(2)。
Q m = 0.278 h R t c F t c (2)
式中: h R t c 历时所对应的净雨量,即总产流量/mm; F t c t c 历时所对应的最大部分汇流面积/km2
在公式的实际计算中,由于客观定量 F t c t c 比较困难,假定:
F t c t c = F τ (3)
式(3)表示在计算时段内,流域面积分配曲线被概化为矩形,因此式(2)可改写成:
Q m = 0.278 h R τ F (4)
式(1)和式(4)中, h τ τ h R t c 都可以粗略地视为以汇流时间 τ 为历时的净雨强度 I τ /(mm/h)。其中, h τ τ 时段的净雨量,故由式(1)和式(4)可知,设计洪水洪峰 Q m 与以汇流时间 τ 为历时的净雨强度 I τ 和流域面积 F 相关,对于比汇流时间短的时段 t 的雨量 h t ,根据推理公式汇流的线性假设,则
h t t = h τ τ = I τ (5)
由此,可得
h t = 3.6 Q m F t = 3.6 Mt t τ (6)
式中: Q m F 即是洪峰模数 M ; I τ 即是以汇流时间为历时的降雨强度。
由此得到临界雨量估算公式为式(7)。
H c = h t + L t = 3.6 Mt + L t , t τ (7)

3.2 计算方法

根据基于洪峰模数的临界雨量估算公式,临界雨量即为净雨量和降雨损失量的总和[15]。净雨量的求解,通过计算洪峰模数即可得到,而降雨损失需要进一步进行分析和讨论。
3.2.1 净雨量计算
确定沿河村落及城集镇等保护对象控制断面临界流量的洪峰模数即可计算出净雨量。根据全国山洪灾害调查评价成果,可以获取山丘区小流域面积,而临界流量的计算,运用调查评价成果中河道断面资料、成灾水位、河道及河岸糙率以及小流域属性数据资料等,采用曼宁公式计算出流速 (式(8)),进而求出临界流量(式(9))。在此基础上,根据式(6)可得,净雨量与临界流量洪峰模数和对应时段的乘积呈线性关系,且线性系数为3.6,由此计算可得净雨量。
v = 1 n × R 2 3 × J 1 2 (8)
Q m = A × v (9)
式中:v为流速/(m/s);n为糙率;R为水力半径/m; J为比降;Qm为流量/(m3/s);A为过水断面面积/m2
3.2.2 降雨损失量计算
基于调查评价成果,集雨面积 F 、预警时段 t 均为已知,成灾水位对应洪峰流量 Q m 也可求得,因此确定降雨损失 L t ,即为估算雨量预警指标的关键。
暴雨山洪因强降雨所致,而山丘区沟(河)道比降较大,故山洪历时很短,陡涨陡落,一般仅持续数小时。针对山丘区暴雨山洪短历时、强降雨、大比降、小面积的这些特点,在进行降雨损失计算时,对暴雨洪水计算中的一些因素,如蒸散发、基流等,可以进行简化甚至省略,但对于设计暴雨洪水计算中一些通常被简化的因素,如流域土壤含水量、前期降雨、土壤下渗动态变化等,又应当具有细化或者较为详细的考虑。基于这样的考虑,降雨损失主要考虑洼地蓄水、植被截留和土壤下渗3个方面。
(1)洼地蓄水:地面洼地具有不同的大小与深度,自土壤颗粒大小的微穴以至几百平方米的大坑不等。当降雨强度超过入渗率之后,超渗雨量首先填满坑洼,然后才能顺坡面流下。根据H.H.戚戈戴夫的研究,由于坡面上坑洼起伏所截流的水量损失,可按表1提供的方法估计。此外,耕作方式也能改变天然的洼坑,而代之以很多的耕作痕迹。人工改造微小地形,如修筑小池塘、鱼鳞坑、高耕作等,都是增加坑洼蓄水量的措施,可以缓和与减少地面径流的作用。
Tab. 1 Estimation of depression storage ‰

表1 洼地蓄水估算方法[16]

洼地描述 蓄水量/mm 备注
非常不平的地面 15 当山坡坡度在100‰以下时,可采用上述数值;当山坡坡度在100~300‰之间,上述截流水量应减少30%;当山坡坡度>300‰时,上述截流水量应减少50%
一般的地面、铺砌面 10
极平坦的地面、沥青面 3
(2)植被截留:应当考虑植被类型、郁闭度、覆盖程度等因素。根据有关研究[17],较差植被的截留量仅在0.25~1.25 mm之间,在山洪净雨分析中通常可以忽略,但对森林覆盖较大的小流域而言,林冠层截留降雨作用与郁闭度、树种、林型以及地面枯枝落叶层等因素有关,低雨量时波动较大,高雨量时达到定值,一般截持量可达13~17 mm[18]
(3)土壤下渗:应当考虑土壤类型、质地、松散程度等因素;按美国水土保持局的资料,典型类型的土壤下渗率可以参考表2。如果有资料率定,也可以采用霍顿公式、菲力浦公式等方法进行更深入的估算。
Tab. 2 Soil types and infiltration rates

表2 土壤类型与下渗率[19]

土壤类型 描述 损失率范围/(mm/h)
沙土 A 较厚的沙地、黄土以及聚合的泥沙 7.62~11.43
沙壤土 B 较浅的砂质黄土、砂壤土、壤土 3.81~7.62
壤土、粘土 C 粘质壤土、浅砂质壤土、低有机物含量的土壤、高粘土含量的土壤 1.27~3.81
湿土、盐碱土 D 因湿润、高塑性粘土含量、或高含盐量而明显膨胀的土壤 0~1.27
3.2.3 汇流时间计算
汇流时间是指不同水源汇集到流域出口断面所经历的时间。本研究需要根据产流时间和汇流时间的关系确定汇流方式,因此需要计算求出流域的汇流时间。汇流时间的计算主要利用推理公式的变形公式(式(10),同时根据云南省汇流参数计算公式(式(11)),初步估计流域的汇流时间。
τ = 0.278 L m J 1 3 Q 1 4 (10)
小流域河长(L)及河流比降(J)可从调查评价成果中获得;临界流量(Q)可以采用曼宁公式(式(8))计算出流速,进而根据断面测量结果估算出过水断面面积,再根据式(9)计算得到临界流量;m值可采用式(11)计算得到(其中θ=L/J1/3)。
m = 0.895 θ 0.064 ( θ < 100 ) 0.380 θ 0.25 ( θ 100 (11)

3.3 资料要求

根据上述雨量预警指标计算方法,需要收集水文、小流域基础数据、河道断面等资料。水文资料主要为当地的暴雨图集和水文手册,以查算不同分区的产流、汇流特性。流域或行政区内山洪灾害调查评价成果,主要为小流域暴雨特性和设计洪水,沿河村落及城集镇等保护对象控制断面、成灾水位、河道及河岸糙率等,植被覆盖、土壤质地及类型、分布等。如有可能,有土壤下渗率曲线资料更好。

4 双河小流域预警指标计算

4.1 资料处理

根据绥江县调查评价成果,收集小流域基础信息、小流域暴雨特性、沿河村落控制断面及成灾水位、河道及河岸糙率、植被覆盖及土壤质地等基础资料。
(1)小流域基础信息。双河片区流域位于昭通市绥江县,面积89.12 km2,河长24.09 km,河道平均比降为25.35‰。
(2)小流域暴雨特性。根据《云南省暴雨洪水查算实用手册》,双河小流域所在暴雨分区为第13区,产流分区为第1分区,初损15 mm,土壤稳定下渗2.2 mm/h[20]。根据山洪灾害分析评价成果,双河片区设计暴雨成果及暴雨时程分配如下(表3、4)。
Tab. 3 Designed storm results of Shuanghe watershed

表3 双河片区流域设计暴雨成果

村落
名称
历时/min 重现期雨量值(Hp)
100年(H1%) 50年(H2%) 20年(H5%) 10年(H10%) 5年(H20%)
双河村双1组 10 29.6 27.0 23.3 20.5 17.4
60 90.9 81.6 69.1 59.3 49.1
360 160.7 142.4 118.1 99.3 80.0
180 128.6 114.6 95.8 81.2 66.1
Tab. 4 Rainstorm distribution of Shuanghe watershed

表4 双河片区流域设计暴雨时程分配

时段序号 5年一遇重现期雨量值
1 h 3 h 6 h
1 34.3 49.4 47.0
2 41.9 59.5 61.9
3 45.6 66.1 68.2
4 49.1 - 72.8
5 - - 76.7
6 - - 80.0
(3)沿河村落双河1组控制断面及成灾水位:断面大致呈梯形,成灾水位为376.43 m,如图2所示。
Fig. 2 Measured section of Shuanghe

图2 双河1组实测控制断面图

(4)河道及河岸糙率。双河1组附近河段景观如图3所示。沿河村落断面河槽呈“U”型,河床由沙砾石、卵石、大乱石土组成。
Fig. 3 River landscape of Shuanghe

图3 双河1组河段景观图

(5)流域坡度、植被覆盖及土壤质地等。双河小流域绝大部分区域坡度在30°左右,靠近流域出口的区域坡度在30°以上,流域上游坡度相对较小一些(图4(a));流域植被覆盖较好,林地面积大约占流域面积的81%(图4(b));土壤质地主要为壤土、粘壤土、砂粘土以及壤粘土,分别为25.34、16.58、37.54 和9.66 km2,分别占流域面积的28.4%、18.6%、42.2%和10.8%;可见,该流域以壤土、粘壤土、砂粘土为主,占了流域面积的89.2%(图4(c))。
Fig. 4 The basic data of Shuanghe watershed

图4 双河片区小流域基础数据

4.2 预警指标计算

4.2.1 临界流量计算
根据双河1组控制断面、成灾水位、河道及河岸糙率等,采用曼宁公式(式(8)),计算流速,进而推算临界流量Qm(式(9))。
相应水位下的过水断面面积A和水力半径R由控制断面求得,河道比降J由纵断面求得,糙率n值由小流域下垫面条件确定。
根据实地调查及测量资料概化(图5表5)进行洪水推算,控制断面附近河道比降为25.35‰,断面过水面积约47 m2,湿周约为32 m,计算得水力半径为1.46 m。根据河床组成情况,糙率取0.045,由此计算临界流量为201 m3/s。具体计算参数及结果 见表6
Fig. 5 Generalization of control section

图5 板栗乡双河村双河1组控制断面概化

Tab. 5 Generalized parameters of control section

表5 板栗乡双河村双河1组控制断面概化参数表

过水面积A 湿周L
A1 A2 A L1 L2 L3 L4 L5 L
25 19.6 44.6 8.06 2.24 6.14 6.14 8 30.6
Tab. 6 The parameters and results of critical flow calculation

表6 双河1组临界流量计算参数及成果

成灾
水位/m
过流
面积/m2
湿周/m 水力
半径/m
糙率 比降/‰ 流速/(m/s) 流量/
(m3/s)
376.43 44.6 31 1.44 0.045 25.35 4.51 201
4.2.2 流域汇流时间分析
在临界流域分析计算基础上,利用式(10)、(11)可初步估计双河片区用于预警的小流域汇流时间。
双河片区小流域河长(L)24.09 km,河流比降(J)为25.35‰,临界流量为201 m3/s,m为1.18,可得双河片区汇流时间约为5 h(表7)。
Tab. 7 The parameters and results of confluence time

表7 双河1组汇流时间计算参数及成果

小流域 Qm/(m3/s) L/km θ m J/‰ τ/h
双河片区1组 201 24.09 80 1.18 25.35 5.2
4.2.3 预警时段净雨量估算
因流域汇流时间计算值约5 h,为尽量包括临界流量推算过程中的不确定性,实际工作中流域汇流时间取得比计算值略长,这里取6 h。根据推导出的净雨计算公式(式(6)),估算各个预警时段所需的净雨量h(表8)。
Tab. 8 The results of net rainfall

表8 双河1组净雨计算结果

时间/h Qm/(m3/s) F/km2 M/(m3/s·km2 净雨值/mm
1 201 89.12 2.26 8.1
3 201 89.12 2.26 24.3
6 201 89.12 2.26 48.6
4.2.4 降雨损失估算
如上所述,降雨损失主要考虑洼地蓄水、植被截留、土壤下渗3部分。根据云南省产流特性分区以及双河小流域下垫面的实际情况,具体考虑:关于洼地蓄水,由于双河1组所在流域绝大部分坡度在30°左右,为非常不平整的地面,蓄水量考虑为 8 mm;由于流域覆盖较大,截留量取15 mm;另外,尽管《云南省暴雨洪水查算实用手册》中提供该区稳定下渗率为2.2 mm/h,但由于流域以壤土、砂壤土、粘壤土以及壤粘图为主,而壤土、粘土的稳定下渗率为1.27~3.81 mm/h,参考《云南省暴雨洪水查算实用手册》以及小流域土壤类别及其面积权重,土壤稳定下渗取2.5 mm/h,由于考虑到下渗的非线性,考虑到3 h以后才达到稳定下渗。降雨损失估算结果见表9
Tab. 9 Estimation results of rainfall losses

表9 双河1组降雨损失估算结果(mm)

时间/h 洼地
蓄水
植被
截留
土壤
下渗
损失量 备注
1 8 15 7.5 30.5 初期土壤下渗7.5 mm/h
3 8 15 17.5 40.5 中间土壤下渗5 mm/h
6 8 15 25.0 48.0 稳渗2.5 mm/h
4.2.5 临界雨量估算
根据式(7)将计算所得的净雨值与损失量相加,即为临界雨量(表10图6)。
Fig. 6 Critical rainfall of Shuanghe

图6 板栗乡双河村双河1组临界雨量

Tab. 1 0 The calculation results of critical rainfall

表1 0 双河1组临界雨量计算结果(mm)

时间/h 净雨值 损失量 临界雨量
1 8.1 30.5 38.6
3 24.3 40.5 64.8
6 48.6 48 96.6
4.2.6 预警指标确定
如上所述,在获得临界雨量的基础上,还应考虑流域土壤含水量等因素,分析临界雨量变化阈值,才能获得预警指标[21-22]。上述主要是以流域土壤含水量较少、流域长时间未下雨的情景下分析的,因此,洼地蓄水、植被截留以及土壤下渗等环节基本上都是按照较大值进行估算的。考虑流域土壤含水量中等及较多情形,对洼地蓄水、植被截留以及土壤下渗进行估算(表11)。
Tab. 1 1 Calculation results of rainfall early warning index

表1 1 双河1组预警指标计算结果(mm)

时间/h 情景 洼地蓄水 植被截留 土壤下渗 损失量 净雨量 临界雨量 预警指标 备注
1 较干 8 15 7.5 30.5 8.1 38.6 40 初期土壤下渗7.5 mm/h
一般 7 14 5.0 26.0 8.1 34.1 35 中间土壤下渗5 mm/h
较湿 6 12 2.5 20.5 8.1 28.6 30 稳渗2.5 mm/h
3 较干 8 15 17.5 40.5 24.3 64.8 65 初期土壤下渗7.5 mm/h
一般 7 14 15.0 36.0 24.3 60.3 60 中间土壤下渗5 mm/h
较湿 6 12 7.5 25.5 24.3 49.8 50 稳渗2.5 mm/h
6 较干 8 15 25.0 48.0 48.6 96.6 95 初期土壤下渗7.5 mm/h
一般 7 14 22.5 43.5 48.6 92.1 90 中间土壤下渗5 mm/h
较湿 6 12 15.0 33.0 48.6 81.6 80 稳渗2.5 mm/h

4.3 合理性分析

利用洪峰模数计算山洪灾害雨量预警指标,临界流量计算和降雨损失分析是核心环节。
(1)临界流量计算结果合理性分析
根据调查评价成果,双河片区设计洪水结果为Qm1%589 m3/s,Qm2%519 m3/s,Qm5%419 m3/s,Qm10%344 m3/s,Qm20%264 m3/s;成灾水位为376.43 m,该水位下对应流量204 m3/s,约为3年一遇洪水。而本例中由曼宁公式估算的临界流量为201 m3/s,对比调查评价计算结果,计算结果较为合理。
(2)降雨损失计算结果合理性分析
由调查评价结果可知,双河流域成灾水位所对应的临界流量约为3年一遇洪水,因此根据设计暴雨成果(表3、4),以及云南省产流分区参数,计算双河片区小流域五年一遇净雨。该区产流分区为第1区,产流参数为Wm=100 mm,Wt=85 mm,fc=2.2 mm/h。初损量W0:W0=Wm-Wt=100-85.0=15.0(mm)。1 h净雨扣损仅考虑初损,3 h、6 h扣初损15.0 mm,扣稳渗2.2 mm/h,当降水量小于2.2 mm/h时,按降水量扣除,由此所剩暴雨量即是设计净雨过程(表12-14)。
Tab. 3 Designed storm results of Shuanghe watershed

表3 双河片区流域设计暴雨成果

村落
名称
历时/min 重现期雨量值(Hp)
100年(H1%) 50年(H2%) 20年(H5%) 10年(H10%) 5年(H20%)
双河村双1组 10 29.6 27.0 23.3 20.5 17.4
60 90.9 81.6 69.1 59.3 49.1
360 160.7 142.4 118.1 99.3 80.0
180 128.6 114.6 95.8 81.2 66.1
Tab. 4 Rainstorm distribution of Shuanghe watershed

表4 双河片区流域设计暴雨时程分配

时段序号 5年一遇重现期雨量值
1 h 3 h 6 h
1 34.3 49.4 47.0
2 41.9 59.5 61.9
3 45.6 66.1 68.2
4 49.1 - 72.8
5 - - 76.7
6 - - 80.0
Tab.1 2 Designed storm runoff in 5-year return period of one hour

表1 2 双河片区小流域1 h五年一遇设计暴雨产流计算成果表

降雨时段/h 合计/h
1 2 3 4
面雨量/mm 3.7 7.6 34.3 3.5 49.1
扣除W0/mm 30.6
扣除fc/mm
净雨/mm 30.6 3.5 34.1
Tab. 1 3 Designed storm runoff in 5-year return period of three hours

表1 3 双河片区小流域3 h五年一遇设计暴雨产流计算成果表

降雨时段/h 合计/h
1 2 3
面雨量/mm 10.1 49.4 6.6 66.1
扣除W0/mm 44.5
扣除fc/mm 42.3 4.4
净雨/mm 42.3 4.4 46.7
Tab.1 4 Designed storm runoff in 5-year return period of six hours

表1 4 双河片区小流域6 h五年一遇设计暴雨产流计算成果表

降雨时段/h 合计/h
1 2 3 4 5 6
面雨量/mm 4.6 6.3 14.9 47 3.9 3.3 80
扣除W0/mm 10.8
扣除fc/mm 8.6 44.8 1.7 1.1
净雨/mm 6.6 44.8 1.7 1.1 56.2
(3)预警指标计算结果合理性分析
表15给出了调查评价工作中关于双河1组预警指标的成果,与表11对比可以发现,此结果与流域土壤较湿情景下的预警指标非常接近,主要的差距体现在对洼地蓄水和植被截留2个方面的考虑。因此,本例计算的雨量预警指标较为合理,该方法可用于基层人员雨量预警指标的计算。
Tab.1 5 Rationality analysis of rainfall early warning index

表1 5 双河片区流域预警指标合理性分析计算结果

时段/h Qm/(m3/s) F/km2 h/mm L/mm 预警指标/mm
1 204 89.12 8.3 15.0 23
3 204 89.12 25 19.4 45
6 204 89.12 50 23.8 74

5 结论及展望

本文基于全国山洪灾害调查评价成果数据,利用小流域洪峰模数,研究简便、易用的雨量预警指标计算方法。该方法主要基于小流域洪水计算推理公式,将推理公式中流量与流域面积的比值用洪峰模数表示,通过减少公式中参数的个数简化雨量预警指标计算公式。首先利用洪峰模数求得净雨量,进而分析降雨损失,估算沿河村落的临界雨量,最后推算求得该地区不同土壤含水量条件下的雨量预警指标。
本研究选取了云南省绥江县双河小流域为研究区域,通过计算可得1 h净雨量为8.1 mm,3 h净雨量为24.3 mm,6 h净雨量为48.6 mm,不同时段净雨值呈现线性相关关系。在降雨损失的计算中,重点考虑洼地蓄水、植被截留、土壤下渗3部分的影响因素,不同时段洼地蓄水和植被截留量是相同的,差别主要在土壤下渗的量值。1 h主要考虑初期土壤下渗,3 h考虑初期和中期土壤下渗,6 h除考虑初期和中期下渗之外,还需考虑稳渗的因素。通过计算求得1、3和6 h的降雨损失分别为30.5、40.5和48 mm。因此,1、3和6 h的临界雨量为38.6、64.8和96.9 mm。在获得临界雨量的基础上,考虑流域土壤含水量等因素,分析不同土壤水含水量条件下的雨量预警指标,得到雨量预警指标计算成果。将该计算成果与调查评价成果相比较结果较为接近,且较为符合当地山洪灾害发生的降雨条件,因此计算方法在技术思路上是可行的。洪峰模数法的提出,为基层人员计算山洪灾害雨量预警指标提供了快速、便捷的计算方法,可有效指导地方山洪灾害预警工作。

The authors have declared that no competing interests exist.

[1]
World Meteorological Organization (WMO). Flash flood forecasting, operational hydrology report: No.18,(WMO-No.577)[M]. Geneva:WMO.47,1981.

[2]
World Meteorological Organization (WMO). Guide to hydrological practices (WMO-No.168).Volume Ⅱ[M]. Geneva:WMO.765,1994.

[3]
孙东亚,张红萍.欧美山洪灾害防治研究进展及实践[J].中国水利,2012(23):16-17.

[ Sun D Y, Zhang H P.Research progress and practice of flash flood prevention in Europe and America[J]. China Water Resources, 2012,23:16-17. ]

[4]
陈桂亚,袁雅鸣.山洪灾害临界雨量分析计算方法研究[J].人民长江,2004,36(4):40-43.一个流域或区域某一时段内降雨量达到或超过某一量级和强度时,该流域或区域将发生山溪洪水、泥石流、滑坡等山洪灾害,把这时的降雨量或降雨强度,称为该流域或区域的临界雨量(强)。临界雨量(强)是一项指标,对于山洪灾害防治有着重要意义。针对水文部门现有雨量站网的雨量资料,并利用气象站网雨量资料作为补充,提出了临界雨量的分析计算方法,可在先分析计算单站临界雨量的基础上,然后分析计算山洪灾害区域的临界雨量,也可直接分析计算典型区域的临界雨量:同时给出了资料缺乏和无资料区域或流域临界雨量的估算方法。通过对典型区域的实例分析,表明提出的方法是可行的。

DOI

[ Chen G Y, Yuan Y M.Research on critical precipitation amount computation method of mountain torrential flood disaster[J]. Yangtze River, 2004,36(4):40-43. ]

[5]
李红霞,覃光华,王欣,等.山洪预报预警技术研究进展[J].水文,2014,34(5):12-16.山洪预报预警研究是实施山洪灾害防治的重要科学支撑.目前国内外学者对山洪预报预警技术的研究主要集中在山洪预警指标、山洪预报预警模型以及山洪灾害风险分析等方面,本文对山洪预报预警技术相关研究进展进行了总结,并指出未来在山洪灾害监测、山洪预报预警模型研制、多元信息融合技术、结合山洪特点和区划有针对性进行预报预警等方面还应进行更深入的研究.

DOI

[ Li H X, Qin G H, Wang X, et al.Advances in study on flash flood forecast and warning[J]. Journal of China Hydrology, 2014,34(5):12-16. ]

[6]
程卫帅. 山洪灾害临界雨量研究综述[J].水科学进展,2013,24(6):901-908.临界雨量是一个关键的山洪灾害预警指标。按其技术原理将临界雨量推求方法划分为数据驱动的统计归纳法和基于灾变物理机制的水文水力学法分别进行评述,并介绍了临界雨量指标的两个拓展:动态临界雨量和暴雨临界曲线,综述了临界雨量不确定性分析的研究进展。通过综述发现:中国目前主要应用的是较简单的统计归纳法;临界雨量推求主要考虑前期降雨量(前期土壤饱和度)和时段累积降雨量两个因素的影响或仅后者一个;临界雨量指标难以反映山洪灾害的规模;考虑临界雨量不确定性有助于提高预警质量,但如何充分考虑其影响仍然是一个挑战。

[ Cheng W S.A review of rainfall thresholds for triggering flash floods[J]. Advances in Water Science, 2013,24(6):901-908. ]

[7]
Hapuarachchi H, Wang Q J, Pagano T C.A review of advances in flash flood forecasting[J]. Hydrological Processes, 2011,25(18):2771-2784.Flash flooding is one of the most hazardous natural events, and it is frequently responsible for loss of life and severe damage to infrastructure and the environment. Research into the use of new modelling techniques and data types in flash flood forecasting has increased over the past decade, and this paper presents a review of recent advances that have emerged from this research. In particular, we focus on the use of quantitative precipitation estimates and forecasts, the use of remotely sensed data in hydrological modelling, developments in forecasting models and techniques, and uncertainty estimates. Over the past decade flash flood forecast lead-time has expanded up to six hours due to improved rainfall forecasts. However the largest source of uncertainty of flash flood forecasts remains unknown future precipitation. An increased number of physically based hydrological models have been developed and used for flash flood forecasting and they have been found to give more plausible results when compared with the results of conceptual, statistical, and neural network models. Among the three methods for deciding flash flood occurrence discussed in this review, the rainfall comparison method (flash flood guidance) is most commonly used for flash flood forecasting as it is easily understood by the general public. Unfortunately, no existing model is capable of making reliable flash flood forecasts in urban watersheds even though the incidence of urban flash flooding is increasing due to increasing urbanisation. Copyright 2011 John Wiley & Sons, Ltd.

DOI

[8]
Norbiato D, Borga M, Dinale R.Flash flood warning in ungauged basins by use of the flash flood guidance and model-based runoff thresholds[J]. Meteorological Applications, 2009,16(1):65-75.We investigate here the use of the Flash Flood Guidance (FFG) method and a method of model-based threshold runoff computation to improve the accuracy of flash flood forecasts at ungauged locations. The methodology proposed in this paper requires running a lumped hydrological model to derive flood frequencies at the outlet of the ungauged basin under consideration, and then to derive the threshold runoff from these model-based discharges. The study examines the potential of this method to account for the hydrologic model uncertainty and for biases originated by lack of model calibration, which is the typical condition in ungauged basins. Experiments to validate this approach involve the implementation of a semi-distributed continuous rainfall-runoff model and the operation of the FFG method over four basins located in the central-eastern Italian Alps and ranging in size from 75.2 km2 to 213.7 km2 . The model is calibrated on two larger basins and the model parameters are transposed to the other two basins to simulate operations in ungauged basins. The FFG method is applied by using the 2-yr discharge as the threshold runoff. The threshold runoff is derived both by using local discharge statistics and the model-based approach advocated here. Examination of the results obtained by this comparison shows that the use of model-based threshold leads to improvements in both gauged and ungauged situations. Overall, the Critical Success Index (CSI) increases by 12% for gauged basins and by 31% for ungauged basins by using the model-based threshold with respect to use of local data. As expected, the increase of CSI is more remarkable for ungauged basins, due to lack of local model calibration and the greater likelihood of occurrence of a simulation bias in model application over these basins. This shows that the method of threshold runoff computation provides an inherent bias correction to reduce systematic errors in model applications to ungauged (and gauged) basins.

DOI

[9]
李昌志,郭良.山洪临界雨量确定方法述评[J].中国防汛抗旱,2013(6):23-28.简要介绍了国内外山洪临界雨量确定的典型方法,如欧美地区FFG法,日本线性相关法,我国台湾地区的降雨驱动指标法、以及大陆地区的实测雨量统计法、水位/流量反推法、暴雨临界曲线法和比拟法等;探索了分布式方法确定临界雨量的方法,重点探讨了以降雨强度、时段雨量、有效累积雨量为指标的山洪临界雨量确定方法;分析了分布式水文法确定临界雨量的优缺点,提出了山洪临界雨量确定方法的建议。

DOI

[ Li C Z, Guo L.Methods of rainfall indicator for flash flood[J]. China Flood & Drought Management, 2013,6:23-28. ]

[10]
刘志雨. 山洪预警预报技术研究与应用[J].中国防汛抗旱,2012,22(2):41-45.受特殊的气候和地形地质条件影响,特别是近年来极端天气事件增多,我国山洪灾害频繁发生,损失严重,已成为洪涝灾害损失的主体,日益引起政府和社会各界的广泛关注。加强山洪监测预警预报,全力提升山洪灾害综合防御能力,是山区建设、社会经济可持续发展的必须保证。分析了我国山洪特性及预警预报特点,介绍了国内外常用的山洪预警预报技术方法,提出了我国山洪预警预报模型与方法选择的原则和步骤,展示了基于动态临界雨量的山洪预警方法和基于分布式水文模型的山洪预报方法在江西遂川江流域的应用案例,以期为当前所开展的全国山洪灾害防治县级非工程措施建设和中小河流水文监测系统建设等工作提供参考。

[ Liu Z Y.Research and application of flash flood warning and forecasting technology[J]. China Flood & Drought Management, 2012,22(2):41-45. ]

[11]
郭良,刘昌军,丁留谦,等.开展全国山洪灾害调查评价的工作设想[J].中国水利,2012(23):10-12.

[ Guo L, Liu C J, Ding L Q, et al.Working plan for mountain flood investigation and evaluation in China[J]. China Water Resources, 2012,23:10-12. ]

[12]
陈家琦,张恭肃.小流域暴雨洪水计算[M].北京:水利水电出版社,1983.

[ Chen J Q, Zhang G S.Storm flood calculation of small basin[M]. Beijing: Water Power Press, 1983. ]

[13]
詹道江,叶守泽.工程水文学[M].北京:中国水利水电出版社,2000.

[ Zhan D J, Ye S Z.Project application of hydrology[M]. Beijing: China Water Power Press, 2000. ]

[14]
谢平,陈广才,李德,等.乌鲁木齐地区小流域设计山洪推理公式的参数规律[J].山地学报, 2006,24(4):410-415.

[ Xie P, Chen G C, Li D, et al.Study on the parameter laws of rational formula for designed flash flood calculation of small basins in Gurmukhi Region[J]. Journal of Mountain Science, 2006,24(4):410-415. ]

[15]
段生荣. 典型小流域山洪灾害临界雨量计算分析[J].水利规划与设计,2009(2):20-21.根据典型小流域自然地理、水文气象、地形地质、生态环境和山洪灾害的调查资料.采用实测雨量分析法、降雨灾害频率分析法和产汇流分析法对比,进行了山洪灾害临界雨量的分析计算。

DOI

[ Duan S R.Calculation of rainfall threshold in flash flood of typical small watershed[J]. Water Resources Planning and Design, 2009,2:20-21. ]

[16]
徐在庸. 山洪及其防治[M].北京:水利出版社,1981.

[ Xu Z Y.Flash flood and prevention[M]. Beijing: Water Press, 1981. ]

[17]
李光敦. 水文学[M].中国台北:五南图书出版社,2005.

[ Li G D.Hydrology[M]. Chinese Taibei: Wu-Nan Book Inc, 2005. ]

[18]
国家防汛抗旱总指挥部办公室,中国科学院水利部成都山地灾害与环境研究所. 山洪泥石流滑坡灾害及防治[M].北京:科学出版社,1994.

[ Office of the State Flood Control and Drought Relief Headquarters, Institute of Mountain Hazards and Environment. Mountain torrents, debris flow, landslide disaster and preventions[M]. Beijing: Science Press, 1994. ]

[19]
李向新,和红强. HEC-HMS水文建模系统原理方法应用[M].北京:中国水利水电出版社,2015.

[ Li X X, He H Q.HEC-HMS hydrological modeling principle, method, and application[M]. Beijing: China Water & Power Press, 2015. ]

[20]
云南省水利水电厅.云南省暴雨洪水查算实用手册[M].Kunming,1992.

[ Yunnan Provincial Water Resources Department. Practical handbook for rainstorm and flood calculation in Yunnan[M]. Kunming, 1992. ]

[21]
Miao Q, Yang D, Yang H, et al.Establishing a rainfall threshold for flash flood warnings in China’s mountainous areas based on a distributed hydrological model[J]. Journal of Hydrology, 2016,541:371-386.Flash flooding is one of the most common natural hazards in China, particularly in mountainous areas, and usually causes heavy damage and casualties. However, the forecasting of flash flooding in mountainous regions remains challenging because of the short response time and limited monitoring capacity. This paper aims to establish a strategy for flash flood warnings in mountainous ungauged catchments across humid, semi-humid and semi-arid regions of China. First, we implement a geomorphology-based hydrological model (GBHM) in four mountainous catchments with drainage areas that ranges from 493 to 1601km2. The results show that the GBHM can simulate flash floods appropriately in these four study catchments. We propose a method to determine the rainfall threshold for flood warning by using frequency analysis and binary classification based on long-term GBHM simulations that are forced by historical rainfall data to create a practically easy and straightforward approach for flash flood forecasting in ungauged mountainous catchments with drainage areas from tens to hundreds of square kilometers. The results show that the rainfall threshold value decreases significantly with increasing antecedent soil moisture in humid regions, while this value decreases slightly with increasing soil moisture in semi-humid and semi-arid regions. We also find that accumulative rainfall over a certain time span (or rainfall over a long time span) is an appropriate threshold for flash flood warnings in humid regions because the runoff is dominated by excess saturation. However, the rainfall intensity (or rainfall over a short time span) is more suitable in semi-humid and semi-arid regions because excess infiltration dominates the runoff in these regions. We conduct a comprehensive evaluation of the rainfall threshold and find that the proposed method produces reasonably accurate flash flood warnings in the study catchments. An evaluation of the performance at uncalibrated interior points in the four gauged catchments provides results that are indicative of the expected performance at ungauged locations. We also find that insufficient historical data lengths (13years with a 5-year flood return period in this study) may introduce uncertainty in the estimation of the flood/rainfall threshold because of the small number of flood events that are used in binary classification. A data sample that contains enough flood events (10 events suggested in the present study) that exceed the threshold value is necessary to obtain acceptable results from binary classification.

DOI

[22]
陈瑜彬,杨文发,许银山.不同土壤含水量的动态临界雨量拟定方法研究[J].人民长江,2015(12):21-26.由于资料缺乏和对临界雨量分析不足等问题,部分山洪防治地区山洪预警效果不佳。基于流域降雨径流关系,结合流域土壤含水量和前期实测降雨量,计算了河道洪峰流量达到安全泄量所需的下一时段降雨量(临界雨量);并以最小二乘法准则拟合前期实测降雨与临界雨量之间的函数关系,建立了不同土壤含水量等级下的动态临界雨量计算函数。依据试验流域隽水1964~2014年共38场具有代表性的典型洪水过程资料,对所建立的动态临界雨量计算函数进行检验,并开展山洪预警试验,合格率达到94.7%。表明该方法用于山洪预警在技术上是可行的。

DOI

[ Chen Y B, Yang W F, Xu Y S.Study of dynamic critical precipitation drafted method under different soil moisture content levels[J]. Yangtze River, 2015,12:21-26. ]

Outlines

/